Abstract

Photovoltaic (PV) power generation can help reduce households’ electricity from the power grid and thus reduce electricity bills. However, due to the intermittence and time-varying nature of PV power generation, part of the clean energy will be wasted. Especially in some places where PV power is allowed to be sold to the power grid, the PV power that exceeds the feed-in limit will be curtailed to reduce the pressure on the infrastructure of the power grid. Battery energy storage systems (BESSs) as energy buffers have attracted increasing attention to help improve the penetration of PV power to households. This paper presents an adaptive energy management method to minimize the energy cost of residential PV-battery systems. First, the uncertainty of the predictive electricity demand and PV power supply is modeled. Then a stochastic model predictive control (SMPC) strategy is used to determine the optimal power flow of the system. Due to the deviation between the predictive input values and the actual ones, the power flow from SMPC is adjusted based on the improved correction strategy (ICS) proposed in this paper. By comparing with the other two methods (one considers the uncertainty and the other does not), the proposed method can increase the economic benefits of the system by 18% and 63%, respectively. The wasted PV power that exceeds the feed-in limit can also be reduced by 24% and 31%. This verifies the effectiveness of the proposed method to improve the system's economic benefits and self-consumption of clean energy.

References

1.
Doetsch
,
C.
,
Droste-Franke
,
B.
,
Mulder
,
G.
,
Scholz
,
Y.
, and
Perrin
,
M.
,
2015
,
Electric Energy Storage-Future Energy Storage Demand
,
International Energy Agency
,
Paris, France
.
2.
Marzband
,
M.
,
Moghaddam
,
M. M.
,
Akorede
,
M. F.
, and
Khomeyrani
,
G.
,
2016
, “
Adaptive Load Shedding Scheme for Frequency Stability Enhancement in Microgrids
,”
Electr. Power Syst. Res.
,
140
, pp.
78
86
.
3.
Zhang
,
F.
,
Fu
,
A.
,
Ding
,
L.
, and
Wu
,
Q.
,
2020
, “
MPC Based Control Strategy for Battery Energy Storage Station in a Grid With High Photovoltaic Power Penetration
,”
Int. J. Electr. Power Energy Syst.
,
115
, p.
105448
.
4.
Truong
,
C.
,
Naumann
,
M.
,
Karl
,
R.
,
Müller
,
M.
,
Jossen
,
A.
, and
Hesse
,
H.
,
2016
, “
Economics of Residential Photovoltaic Battery Systems in Germany: The Case of Tesla’s Powerwall
,”
Batteries
,
2
(
2
), p.
14
.
5.
Martins
,
R.
,
Hesse
,
H.
,
Jungbauer
,
J.
,
Vorbuchner
,
T.
, and
Musilek
,
P.
,
2018
, “
Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications
,”
Energies
,
11
(
8
), p.
2048
.
6.
Hesse
,
H.
,
Martins
,
R.
,
Musilek
,
P.
,
Naumann
,
M.
,
Truong
,
C.
, and
Jossen
,
A.
,
2017
, “
Economic Optimization of Component Sizing for Residential Battery Storage Systems
,”
Energies
,
10
(
7
), p.
835
.
7.
Teleke
,
S.
,
Baran
,
M. E.
,
Bhattacharya
,
S.
, and
Huang
,
A. Q.
,
2010
, “
Rule-Based Control of Battery Energy Storage for Dispatching Intermittent Renewable Sources
,”
IEEE Trans. Sustainable Energy
,
1
(
3
), pp.
117
124
.
8.
Song
,
Z.
,
Feng
,
S.
,
Zhang
,
L.
,
Hu
,
Z.
,
Hu
,
X.
, and
Yao
,
R.
,
2019
, “
Economy Analysis of Second-Life Battery in Wind Power Systems Considering Battery Degradation in Dynamic Processes: Real Case Scenarios
,”
Appl. Energy
,
251
, p.
113411
.
9.
Sommerfeldt
,
N.
, and
Madani
,
H.
,
2015
, “
On the Use of Hourly Pricing in Techno-Economic Analyses for Solar Photovoltaic Systems
,”
Energy Convers. Manage.
,
102
, pp.
180
189
.
10.
Zhang
,
Y.
,
Lundblad
,
A.
,
Campana
,
P. E.
,
Benavente
,
F.
, and
Yan
,
J.
,
2017
, “
Battery Sizing and Rule-Based Operation of Grid-Connected Photovoltaic-Battery System: A Case Study in Sweden
,”
Energy Convers. Manage.
,
133
, pp.
249
263
.
11.
Bhende
,
C. N.
,
Panda
,
S.
,
Mishra
,
S.
,
Narayanan
,
A.
,
Kaipia
,
T.
, and
Partanen
,
J.
,
2019
, “
Optimal Power Flow Management and Control of Grid Connected Photovoltaic-Battery System
,”
Int. J. Emerging Electr. Power Syst.
,
20
(
5
), p.
20190056
.
12.
Zhang
,
Y.
,
Campana
,
P. E.
,
Lundblad
,
A.
, and
Yan
,
J.
,
2017
, “
Comparative Study of Hydrogen Storage and Battery Storage in Grid Connected Photovoltaic System: Storage Sizing and Rule-Based Operation
,”
Appl. Energy
,
201
, pp.
397
411
.
13.
Musilek
,
P.
,
Krömer
,
P.
,
Martins
,
R.
, and
Hesse
,
H. C.
,
2017
, “
Optimal Energy Management of Residential PV/HESS Using Evolutionary Fuzzy Control
,”
2017 IEEE Congress on Evolutionary Computation (CEC)
,
Donostia, Spain
,
June 5–8
, pp.
2094
2101
.
14.
Zeh
,
A.
, and
Witzmann
,
R.
,
2014
, “
Operational Strategies for Battery Storage Systems in Low-Voltage Distribution Grids to Limit the Feed-In Power of Roof-Mounted Solar Power Systems
,”
Energy Procedia
,
46
, pp.
114
123
.
15.
Nottrott
,
A.
,
Kleissl
,
J.
, and
Washom
,
B.
,
2013
, “
Energy Dispatch Schedule Optimization and Cost Benefit Analysis for Grid-Connected, Photovoltaic-Battery Storage Systems
,”
Renewable Energy
,
55
, pp.
230
240
.
16.
Clastres
,
C.
,
Ha Pham
,
T. T.
,
Wurtz
,
F.
, and
Bacha
,
S.
,
2010
, “
Ancillary Services and Optimal Household Energy Management With Photovoltaic Production
,”
Energy
,
35
(
1
), pp.
55
64
.
17.
Riffonneau
,
Y.
,
Bacha
,
S.
,
Barruel
,
F.
, and
Ploix
,
S.
,
2011
, “
Optimal Power Flow Management for Grid Connected PV Systems With Batteries
,”
IEEE Trans. Sustainable Energy
,
2
(
3
), pp.
309
320
.
18.
Sun
,
C.
,
Sun
,
F.
, and
Moura
,
S.
,
2016
, “
Nonlinear Predictive Energy Management of Residential Buildings With Photovoltaics & Batteries
,”
J. Power Sources
,
325
, pp.
723
731
.
19.
Gulin
,
M.
,
Matuško
,
J.
, and
Vašak
,
M.
,
2015
, “
Stochastic Model Predictive Control for Optimal Economic Operation of a Residential DC Microgrid
,”
2015 IEEE International Conference on Industrial Technology (ICIT)
,
Seville, Spain
,
Mar. 17–19
, pp.
505
510
.
20.
Garifi
,
K.
,
Baker
,
K.
,
Touri
,
B.
, and
Christensen
,
D.
,
2018
, “
Stochastic Model Predictive Control for Demand Response in a Home Energy Management System
,”
2018 IEEE Power & Energy Society General Meeting (PESGM)
,
Portland, OR
,
Aug. 5–10
, pp.
1
5
.
21.
Li
,
Z.
,
Zang
,
C.
,
Zeng
,
P.
, and
Yu
,
H.
,
2016
, “
Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty
,”
Energies
,
9
(
7
), p.
499
.
22.
Nugraha
,
P. Y.
,
Widyotriatmo
,
A.
, and
Samsi
,
A.
,
2016
, “
Optimization of Capacity and Operational Scheduling for Microgrid System Using Two-Stage Stochastic Linear Programming
,”
2016 International Conference on Instrumentation, Control and Automation (ICA)
,
Bandung, Indonesia
,
Aug. 29–31
, pp.
178
183
.
23.
Wu
,
X.
,
Hu
,
X.
,
Moura
,
S.
,
Yin
,
X.
, and
Pickert
,
V.
,
2016
, “
Stochastic Control of Smart Home Energy Management With Plug-in Electric Vehicle Battery Energy Storage and Photovoltaic Array
,”
J. Power Sources
,
333
, pp.
203
212
.
24.
Rahmani-Andebili
,
M.
, and
Shen
,
H.
,
2016
, “
Energy Scheduling for a Smart Home Applying Stochastic Model Predictive Control
,”
2016 25th International Conference on Computer Communication and Networks (ICCCN)
,
Waikoloa, HI
,
Aug. 1–4
, pp.
1
6
.
25.
Wu
,
H.
,
Pratt
,
A.
, and
Chakraborty
,
S.
,
2015
, “
Stochastic Optimal Scheduling of Residential Appliances With Renewable Energy Sources
,”
2015 IEEE Power & Energy Society General Meeting
,
Denver, CO
,
July 26–30
, pp.
1
5
.
26.
Yousefi
,
M.
,
Hajizadeh
,
A.
,
Soltani
,
M.
, and
Hredzak
,
B.
,
2020
, “
Predictive Home Energy Management System With Photovoltaic Array, Heat Pump, and Plug-In Electric Vehicle
,”
IEEE Trans. Ind. Inf.
,
17
(
1
), pp.
430
440
.
27.
Wakui
,
T.
,
Sawada
,
K.
,
Yokoyama
,
R.
, and
Aki
,
H.
,
2019
, “
Predictive Management for Energy Supply Networks Using Photovoltaics, Heat Pumps, and Battery by Two-Stage Stochastic Programming and Rule-Based Control
,”
Energy
,
179
, pp.
1302
1319
.
28.
Aki
,
H.
,
Wakui
,
T.
, and
Yokoyama
,
R.
,
2016
, “
Development of an Energy Management System for Optimal Operation of Fuel Cell Based Residential Energy Systems
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20314
20325
.
29.
Aki
,
H.
,
Wakui
,
T.
,
Yokoyama
,
R.
, and
Sawada
,
K.
,
2018
, “
Optimal Management of Multiple Heat Sources in a Residential Area by an Energy Management System
,”
Energy
,
153
, pp.
1048
1060
.
30.
Deng
,
Z.
,
Hu
,
X.
,
Lin
,
X.
,
Xu
,
L.
,
Che
,
Y.
, and
Hu
,
L.
,
2020
, “
General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries
,”
IEEE/ASME Trans. Mechatron.
31.
Khan
,
A. R.
,
Mahmood
,
A.
,
Safdar
,
A.
,
Khan
,
Z. A.
, and
Khan
,
N. A.
,
2016
, “
Load Forecasting, Dynamic Pricing and DSM in Smart Grid: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1311
1322
.
32.
Hong
,
T.
, and
Fan
,
S.
,
2016
, “
Probabilistic Electric Load Forecasting: A Tutorial Review
,”
Int. J. Forecast.
,
32
(
3
), pp.
914
938
.
33.
Raza
,
M. Q.
, and
Khosravi
,
A.
,
2015
, “
A Review on Artificial Intelligence Based Load Demand Forecasting Techniques for Smart Grid and Buildings
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
1352
1372
.
34.
Naumann
,
M.
,
Truong
,
C. N.
,
Schimpe
,
M.
,
Kucevic
,
D.
,
Jossen
,
A.
, and
Hesse
,
H. C.
,
2017
, “
Simses: Software
,”
International ETG Congress 2017
,
Bonn, Germany
,
Nov. 28–29
, pp.
1
6
.
35.
Kaut
,
M.
, and
Wallace
,
S. W.
,
2003
, “
Evaluation of Scenario-Generation Methods for Stochastic Programming
,”
Pac. J. Optim.
,
3
, pp.
14
2003
.
36.
Beltran-Royo
,
C.
,
2017
, “
Two-Stage Stochastic Mixed-Integer Linear Programming: The Conditional Scenario Approach
,”
Omega
,
70
, pp.
31
42
.
37.
Sultana
,
W. R.
,
Sahoo
,
S. K.
,
Sukchai
,
S.
,
Yamuna
,
S.
, and
Venkatesh
,
D.
,
2017
, “
A Review on State of Art Development of Model Predictive Control for Renewable Energy Applications
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
391
406
.
38.
Li
,
W.
,
Erickson
,
E. M.
, and
Manthiram
,
A.
,
2020
, “
High-Nickel Layered Oxide Cathodes for Lithium-Based Automotive Batteries
,”
Nat. Energy
,
5
(
1
), pp.
26
34
.
39.
Martinez-Laserna
,
E.
,
Gandiaga
,
I.
,
Sarasketa-Zabala
,
E.
,
Badeda
,
J.
,
Stroe
,
D. I.
,
Swierczynski
,
M.
, and
Goikoetxea
,
A.
,
2018
, “
Battery Second Life: Hype, Hope or Reality? A Critical Review of the State of the Art
,”
Renewable Sustainable Energy Rev.
,
93
, pp.
701
718
.
You do not currently have access to this content.