Abstract

Global warming due to the accumulation of CO2 in the atmosphere has directed global attention toward the adaptation of renewable energies and the use of renewable energy resources, like solar energy. Solar energy utilization could contribute to clean energy production, which is continuously needed due to increased population and industrialization. Recent increasing anxieties over energy sustainability and the preservation of the falling global ecosystem have renewed the expedition for extra efficient and economical processes for the utilization of renewable energy. Various approaches have been developed for the effective utilization of solar energy in different fields, which are highlighted in this work. In power generation, solar energy is utilized in preheating the air upstream of the combustion chamber in gas turbines and in waste heat recovery for combined-cogeneration cycles. It can also be used in Rankine cycles of thermal power plants utilizing low critical temperature gases such as CO2. In cooling and refrigeration systems, solar energy is utilized in reboilers, absorption, and mechanical cooling systems. Solar energy can also be utilized to produce clean fuels such as H2 production either from water splitting or from light and heavy fuels via fuel reforming and membrane separation. In addition, solar systems can be integrated to carbon capture applications in each of its three technologies of precombustion, oxyfuel combustion, and post-combustion. Integration of solar energy in these processes is reviewed comprehensively in this work. Thus, the solar energy in power generation, cooling-refrigeration, hydrogen production-storage, and carbon capture technologies are analyzed and evaluated.

References

1.
Aliyu
,
M.
,
AlQudaihi
,
A. B.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2020
, “
Energy, Exergy and Parametric Analysis of a Combined Cycle Power Plant
,”
Ther. Sci. Eng. Prog.
,
15
, p.
100450
.
2.
Habib
,
M. A.
,
Rashwan
,
S. S.
,
Haroon
,
S.
, and
Khaliq
,
A.
,
2018
, “
Thermodynamics and Emission Analysis of a Modified Brayton Cycle Subjected to Air Cooling and Evaporative After Cooling
,”
Energy Convers. Manage.
,
174
, pp.
322
335
.
3.
Khaliq
,
A.
,
Habib
,
M. A.
, and
Choudhary
,
K.
,
2019
, “
A Thermo-Environmental Evaluation of a Modified Combustion Gas Turbine Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042004
.
4.
Shehadeh
,
S. H.
,
Moh’d
,
A.
,
Aly
,
H. H.
, and
El-Hawary
,
M. E.
,
2020
, “
An Intelligent Load Management Application for Solar Boiler System
,”
Sust. Energy Technol. Assessments
,
38
, p.100644.
5.
Imteyaz
,
B.
,
Lawal
,
D. U.
,
Tahir
,
F.
, and
Rehman
,
S.
,
2021
, “
Prospects of Large-Scale Photovoltaic-Based Power Plants in the Kingdom of Saudi Arabia
,”
Eng. Rep.
,
e12398
(
Feb.
), pp.
1
16
.
6.
Sheu
,
E. J.
,
Mitsos
,
A.
,
Eter
,
A. A.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Al-Qutub
,
A.
,
2012
, “
A Review of Hybrid Solar-Fossil Fuel Power Generation Systems and Performance Metrics
,”
ASME J. Solar Energy Eng.
,
134
(
4
), p.
041006
.
7.
Mokheimer, E.M. and Habib, M.A.A., King Fahd University of Petroleum, 2014, “Integrated Solar-Gas Turbine Cogeneration Plant,” U.S. Patent 8,893,505.
8.
Mokheimer, E.M.A. and Habib, M.A.A., King Fahd University of Petroleum, 2022, “Solar Power Assisted System for Generating Electricity, Heat and Desalinated Water,” U.S. Patent 11,473,498.
9.
Nemitallah, M.A. and Habib, M.A.A., King Fahd University of Petroleum, 2020, “Turbine Connected Hybrid Solar-Syngas Power System,” U.S. Patent 10,619,571.
10.
Nguyen
,
V.-T.
,
Hung
,
W.-C.
,
Cheng
,
T.-C.
, and
Fang
,
T.-H.
,
2020
, “
Investigation of a Desalination System With the Hybrid Solar/Electrical Heating Module
,”
ASME J. Solar Energy Eng.
,
142
(
2
), p.
021001
.
11.
Alghool
,
D. M.
,
Elmekkawy
,
T. Y.
,
Haouari
,
M.
, and
Elomri
,
A.
,
2020
, “
Optimization of Design and Operation of Solar Assisted District Cooling Systems
,”
Energy Convers. Manage.: X
,
6
, p.
100028
.
12.
Mao
,
Q.
, and
Zhang
,
Y.
,
2020
, “
Thermal Energy Storage Performance of a Three-PCM Cascade Tank in a High-Temperature Packed Bed System
,”
Renew. Energy
,
152
, pp.
110
119
.
13.
Yang
,
J.
,
Xiao
,
W.
,
Chi
,
X.
,
Lu
,
X.
,
Hu
,
S.
,
Wu
,
Z.
,
Tang
,
W.
, et al
,
2020
, “
Solar-Driven Efficient Methane Catalytic Oxidation Over Epitaxial ZnO/La0.8Sr0.2CoO3 Heterojunctions
,”
Appl. Catal. B: Environ.
,
265
, p.
118469
.
14.
Ben-mansour
,
R.
,
Azazul Haque
,
M. D.
,
Harale
,
A.
,
Paglieri
,
S. N.
,
Alrashed
,
F. S.
,
Raghib Shakeel
,
M.
,
Mokheimer
,
E. M. A.
, and
Habib
,
M. A.
,
2021
, “
Comprehensive Parametric Investigation of Methane Reforming and Hydrogen Separation Using a CFD Model
,”
Energy Convers. Manage.
,
249
, p.
114838
.
15.
Javed
,
M. S.
,
Ma
,
T.
,
Jurasz
,
J.
, and
Amin
,
M. Y.
,
2020
, “
Solar and Wind Power Generation Systems With Pumped Hydro Storage: Review and Future Perspectives
,”
Renew. Energy
,
148
, pp.
176
192
.
16.
Mohsenipour
,
M.
,
Ebadollahi
,
M.
,
Rostamzadeh
,
H.
, and
Amidpour
,
M.
,
2020
, “
Design and Evaluation of a Solar-Based Trigeneration System for a Nearly Zero Energy Greenhouse in Arid Region
,”
J. Clean. Prod.
,
254
, p.
119990
.
17.
Mokheimer
,
E. M. A.
, and
Habib
,
M. A. A.
,
2019
, “
Solar Assisted Gas Turbine Desalination and Carbon Capture System
.”
18.
Mokheimer
,
E. M. A.
, and
Habib
,
M. A. A.
,
2017
, “
Hybrid Solar Thermal Enhanced Oil Recovery System With Oxy-Fuel Combustor
.”
19.
Herez
,
A.
,
El Hage
,
H.
,
Lemenand
,
T.
,
Ramadan
,
M.
, and
Khaled
,
M.
,
2020
, “
Review on Photovoltaic/Thermal Hybrid Solar Collectors: Classifications, Applications and New Systems
,”
Sol. Energy
,
207
, pp.
1321
1347
.
20.
Loni
,
R.
,
Mahian
,
O.
,
Markides
,
C. N.
,
Bellos
,
E.
,
le Roux
,
W. G.
,
Kasaeian
,
A.
,
Najafi
,
G.
, and
Rajaee
,
F.
,
2021
, “
A Review of Solar-Driven Organic Rankine Cycles: Recent Challenges and Future Outlook
,”
Renew. Sust. Energy Rev.
,
150
, p.
111410
.
21.
Pradhan
,
S.
,
Chakraborty
,
R.
,
Mandal
,
D. K.
,
Barman
,
A.
, and
Bose
,
P.
,
2021
, “
Design and Performance Analysis of Solar Chimney Power Plant (SCPP): A Review
,”
Sust. Energy Technol. Assessments
,
47
, p.
101411
.
22.
Alsagri
,
A. S.
,
Alrobaian
,
A. A.
, and
Almohaimeed
,
S. A.
,
2020
, “
Concentrating Solar Collectors in Absorption and Adsorption Cooling Cycles: An Overview
,”
Energy Convers. Manage.
,
223
, p.
113420
.
23.
Almasri
,
R. A.
,
Abu-Hamdeh
,
N. H.
,
Esmaeil
,
K. K.
, and
Suyambazhahan
,
S.
,
2022
, “
Thermal Solar Sorption Cooling Systems—A Review of Principle, Technology, and Applications
,”
Alexandria Eng. J.
,
61
(
1
), pp.
367
402
.
24.
Liu
,
G.
,
Sheng
,
Y.
,
Ager
,
J. W.
,
Kraft
,
M.
, and
Xu
,
R.
,
2019
, “
Research Advances Towards Large-Scale Solar Hydrogen Production From Water
,”
EnergyChem
,
1
(
2
), p.
100014
.
25.
Zhou
,
C.
,
Shi
,
R.
,
Waterhouse
,
G. I. N.
, and
Zhang
,
T.
,
2020
, “
Recent Advances in Niobium-Based Semiconductors for Solar Hydrogen Production
,”
Coord. Chem. Rev.
,
419
, p.
213399
.
26.
Razi
,
F.
, and
Dincer
,
I.
,
2020
, “
A Critical Evaluation of Potential Routes of Solar Hydrogen Production for Sustainable Development
,”
J. Clean. Prod.
,
264
, p.
121582
.
27.
Burton
,
N. A.
,
Padilla
,
R. V.
,
Rose
,
A.
, and
Habibullah
,
H.
,
2021
, “
Increasing the Efficiency of Hydrogen Production From Solar Powered Water Electrolysis
,”
Renewa. Sust. Energy Rev.
,
135
(
July 2020
), p.
110255
.
28.
Tasleem
,
S.
, and
Tahir
,
M.
,
2020
, “
Current Trends in Strategies to Improve Photocatalytic Performance of Perovskites Materials for Solar to Hydrogen Production
,”
Renew. Sust. Energy Rev.
,
132
, p.
110073
.
29.
Saghafifar
,
M.
, and
Gabra
,
S.
,
2020
, “
A Critical Overview of Solar Assisted Carbon Capture Systems: Is Solar Always the Solution?
,”
Int. J. Greenhouse Gas Control
,
92
(
Sept. 2019
), p.
102852
.
30.
Habib
,
M. A.
,
Badr
,
H. M.
,
Ahmed
,
S. F.
,
Ben-Mansour
,
R.
,
Mezghani
,
K.
,
Imashuku
,
S.
,
la O’
,
G. J.
, et al
,
2011
, “
A Review of Recent Developments in Carbon Capture Utilizing Oxy-Fuel Combustion in Conventional and Ion Transport Membrane Systems
,”
Int. J. Energy Res.
,
35
(
9
), pp.
741
764
.
31.
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
32.
Nualboonrueng
,
T.
,
Tuenpusa
,
P.
,
Ueda
,
Y.
, and
Akisawa
,
A.
,
2012
, “
Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok
,”
Energies (Basel)
,
5
(
4
), pp.
1229
1244
.
33.
Shyam
,
Tiwari
,
G. N.
,
Fischer
,
O.
,
Mishra
,
R. K.
, and
Al-Helal
,
I. M.
,
2016
, “
Performance Evaluation of N-Photovoltaic Thermal (PVT) Water Collectors Partially Covered by Photovoltaic Module Connected in Series: An Experimental Study
,”
Sol. Energy
,
134
, pp.
302
313
.
34.
Chaabane
,
M.
,
Charfi
,
W.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2019
, “
Performance Evaluation of Solar Photovoltaic Systems
,”
Int. J. Green Energy
,
16
(
14
), pp.
1295
1303
.
35.
El Hocine
,
H. B. C.
,
Touafek
,
K.
, and
Kerrour
,
F.
,
2017
, “
Theoretical and Experimental Studies of a New Configuration of Photovoltaic-Thermal Collector
,”
ASME J. Solar Energy Eng.
,
139
(
2
), p.
021012
.
36.
Aste
,
N.
,
Del Pero
,
C.
,
Leonforte
,
F.
, and
Manfren
,
M.
,
2016
, “
Performance Monitoring and Modeling of an Uncovered Photovoltaic-Thermal (PVT) Water Collector
,”
Sol. Energy
,
135
, pp.
551
568
.
37.
Shyam
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2015
, “
Analytical Expression of Temperature Dependent Electrical Efficiency of N-PVT Water Collectors Connected in Series
,”
Sol. Energy
,
114
, pp.
61
76
.
38.
Gaur
,
A.
,
Ménézo
,
C.
, and
Giroux-Julien
,
S.
,
2017
, “
Numerical Studies on Thermal and Electrical Performance of a Fully Wetted Absorber PVT Collector With PCM as a Storage Medium
,”
Renew. Energy
,
109
, pp.
168
187
.
39.
Lämmle
,
M.
,
Kroyer
,
T.
,
Fortuin
,
S.
,
Wiese
,
M.
, and
Hermann
,
M.
,
2016
, “
Development and Modelling of Highly-Efficient PVT Collectors With Low-Emissivity Coatings
,”
Sol. Energy
,
130
, pp.
161
173
.
40.
Jelle
,
B. P.
,
Kalnæs
,
S. E.
, and
Gao
,
T.
,
2015
, “
Low-Emissivity Materials for Building Applications: A State-of-the-Art Review and Future Research Perspectives
,”
Energy Build.
,
96
(
7491
), pp.
329
356
.
41.
Othman
,
M. Y.
,
Hamid
,
S. A.
,
Tabook
,
M. A. S.
,
Sopian
,
K.
,
Roslan
,
M. H.
, and
Ibarahim
,
Z.
,
2016
, “
Performance Analysis of PV/T Combi With Water and Air Heating System: An Experimental Study
,”
Renew. Energy
,
86
, pp.
716
722
.
42.
Preet
,
S.
,
Bhushan
,
B.
, and
Mahajan
,
T.
,
2017
, “
Experimental Investigation of Water Based Photovoltaic/Thermal (PV/T) System with and Without Phase Change Material (PCM)
,”
Sol. Energy
,
155
, pp.
1104
1120
.
43.
Kant
,
K.
,
Shukla
,
A.
,
Sharma
,
A.
, and
Biwole
,
P. H.
,
2016
, “
Heat Transfer Studies of Photovoltaic Panel Coupled With Phase Change Material
,”
Sol. Energy
,
140
, pp.
151
161
.
44.
Rahou
,
M.
,
Othman
,
M. Y.
,
Mat
,
S.
, and
Ibrahim
,
A.
,
2014
, “
Performance Study of a Photovoltaic Thermal System With an Oscillatory Flow Design
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011012
.
45.
Dupeyrat
,
P.
,
Ménézo
,
C.
,
Rommel
,
M.
, and
Henning
,
H. M.
,
2011
, “
Efficient Single Glazed Flat Plate Photovoltaic-Thermal Hybrid Collector for Domestic Hot Water System
,”
Sol. Energy
,
85
(
7
), pp.
1457
1468
.
46.
Singh
,
D. B.
,
Yadav
,
J. K.
,
Dwivedi
,
V. K.
,
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Experimental Studies of Active Solar Still Integrated With Two Hybrid PVT Collectors
,”
Sol. Energy
,
130
, pp.
207
223
.
47.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2013
, “
Enviroeconomic Analysis and Energy Matrices of Glazed Hybrid Photovoltaic Thermal Module Air Collector
,”
Sol. Energy
,
92
, pp.
139
146
.
48.
Slimani
,
M. E. A.
,
Amirat
,
M.
,
Kurucz
,
I.
,
Bahria
,
S.
,
Hamidat
,
A.
, and
Chaouch
,
W. B.
,
2017
, “
A Detailed Thermal-Electrical Model of Three Photovoltaic/Thermal (PV/T) Hybrid Air Collectors and Photovoltaic (PV) Module: Comparative Study Under Algiers Climatic Conditions
,”
Energy Convers. Manage.
,
133
, pp.
458
476
.
49.
Farshchimonfared
,
M.
,
Bilbao
,
J. I.
, and
Sproul
,
A. B.
,
2015
, “
Channel Depth, Air Mass Flow Rate and Air Distribution Duct Diameter Optimization of Photovoltaic Thermal (PV/T) Air Collectors Linked to Residential Buildings
,”
Renew. Energy
,
76
, pp.
27
35
.
50.
Shahsavar
,
A.
, and
Ameri
,
M.
,
2010
, “
Experimental Investigation and Modeling of a Direct-Coupled PV/T Air Collector
,”
Sol. Energy
,
84
(
11
), pp.
1938
1958
.
51.
Mojiri
,
A.
,
Taylor
,
R.
,
Thomsen
,
E.
, and
Rosengarten
,
G.
,
2013
, “
Spectral Beam Splitting for Efficient Conversion of Solar Energy—A Review
,”
Renew. Sust. Energy Rev.
,
28
, pp.
654
663
.
52.
Singh
,
S.
,
Agarwal
,
S.
,
Tiwari
,
G. N.
, and
Chauhan
,
D.
,
2015
, “
Application of Genetic Algorithm With Multi-objective Function to Improve the Efficiency of Glazed Photovoltaic Thermal System for New Delhi (India) Climatic Condition
,”
Sol. Energy
,
117
, pp.
153
166
.
53.
Farshchimonfared
,
M.
,
Bilbao
,
J. I.
, and
Sproul
,
A. B.
,
2016
, “
Full Optimisation and Sensitivity Analysis of a Photovoltaic–Thermal (PV/T) Air System Linked to a Typical Residential Building
,”
Sol. Energy
,
136
, pp.
15
22
.
54.
Bambrook
,
S. M.
, and
Sproul
,
A. B.
,
2012
, “
Maximising the Energy Output of a PVT Air System
,”
Sol. Energy
,
86
(
6
), pp.
1857
1871
.
55.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2015
, “
Performance Analysis in Terms of Carbon Credit Earned on Annualized Uniform Cost of Glazed Hybrid Photovoltaic Thermal Air Collector
,”
Sol. Energy
,
115
, pp.
329
340
.
56.
Ferrer-Rodríguez
,
J. P.
,
Baig
,
H.
,
Fernández
,
E. F.
,
Almonacid
,
F.
,
Mallick
,
T.
, and
Pérez-Higueras
,
P.
,
2017
, “
Optical Modeling of Four Fresnel-Based High-CPV Units
,”
Sol. Energy
,
155
, pp.
805
815
.
57.
Han
,
X.
,
Guo
,
Y.
,
Wang
,
Q.
, and
Phelan
,
P.
,
2018
, “
Optical Characterization and Durability of Immersion Cooling Liquids for High Concentration III-V Photovoltaic Systems
,”
Sol. Energy Mater. Sol. Cells
,
174
(
August 2017
), pp.
124
131
.
58.
Emam
,
M.
, and
Ahmed
,
M.
,
2018
, “
Cooling Concentrator Photovoltaic Systems Using Various Configurations of Phase-Change Material Heat Sinks
,”
Energy Convers. Manage.
,
158
(
December 2017
), pp.
298
314
.
59.
Renno
,
C.
,
Petito
,
F.
,
Landi
,
G.
, and
Neitzert
,
H. C.
,
2017
, “
Experimental Characterization of a Concentrating Photovoltaic System Varying the Light Concentration
,”
Energy Convers. Manage.
,
138
, pp.
119
130
.
60.
Steiner
,
M.
,
Siefer
,
G.
,
Schmidt
,
T.
,
Wiesenfarth
,
M.
,
Dimroth
,
F.
, and
Bett
,
A. W.
,
2016
, “
43% Sunlight to Electricity Conversion Efficiency Using CPV
,”
IEEE J. Photovolt.
,
6
(
4
), pp.
1020
1024
.
61.
Pitz-Paal
,
R.
,
2014
, “Solar Energy—Concentrating Solar Power,”
Future Energy
,
Elsevier
,
New York
, pp.
405
431
.
62.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renew. Sust. Energy Rev.
,
22
, pp.
168
186
.
63.
Wang
,
J.
,
Pan
,
C.
,
Luo
,
K.
,
Chen
,
L.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2018
, “
Thermal Analysis of Stirling Thermo-compressor and its Prospect to Drive Refrigerator by Using Natural Working Fluid
,”
Energy Convers. Manage
,
177
, pp.
280
291
.
64.
Ibsaine
,
R.
,
Joffroy
,
J.-M.
, and
Stouffs
,
P.
,
2016
, “
Modelling of a New Thermal Compressor for Supercritical CO 2 Heat Pump
,”
Energy
,
117
, pp.
530
539
.
65.
Mahmoudi
,
A.
,
Fazli
,
M.
, and
Morad
,
M. R.
,
2018
, “
A Recent Review of Waste Heat Recovery by Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
143
, pp.
660
675
.
66.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2019
, “
A Comprehensive Review of Organic Rankine Cycle Waste Heat Recovery Systems in Heavy-Duty Diesel Engine Applications
,”
Renew. Sust. Energy Rev.
,
107
, pp.
145
170
.
67.
Zeyghami
,
M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E.
,
2015
, “
A Review of Solar Thermo-Mechanical Refrigeration and Cooling Methods
,”
Renew. Sust. Energy Rev.
,
51
, pp.
1428
1445
.
68.
Pourkiaei
,
S. M.
,
Ahmadi
,
M. H.
,
Sadeghzadeh
,
M.
,
Moosavi
,
S.
,
Pourfayaz
,
F.
,
Chen
,
L.
,
Pour Yazdi
,
M. A.
, and
Kumar
,
R.
,
2019
, “
Thermoelectric Cooler and Thermoelectric Generator Devices: A Review of Present and Potential Applications, Modeling and Materials
,”
Energy
,
186
, p.
115849
.
69.
Nikbakhti
,
R.
,
Wang
,
X.
, and
Chan
,
A.
,
2020
, “
Performance Analysis of an Integrated Adsorption and Absorption Refrigeration System
,”
Int. J. Refrig.
,
117
, pp.
269
283
.
70.
Nikbakhti
,
R.
,
Wang
,
X.
, and
Chan
,
A.
,
2021
, “
Performance Optimization of an Integrated Adsorption–Absorption Cooling System Driven by Low-Grade Thermal Energy
,”
Appl. Therm. Eng.
,
193
, p.
117035
.
71.
Nikbakhti
,
R.
,
Wang
,
X.
,
Hussein
,
A. K.
, and
Iranmanesh
,
A.
,
2020
, “
Absorption Cooling Systems—Review of Various Techniques for Energy Performance Enhancement
,”
Alexandria Eng. J.
,
59
(
2
), pp.
707
738
.
72.
Xu
,
Z. Y.
, and
Wang
,
R. Z.
,
2016
, “
Absorption Refrigeration Cycles: Categorized Based on the Cycle Construction
,”
Int. J. Refrig.
,
62
, pp.
114
136
.
73.
Darkwa
,
J.
,
Fraser
,
S.
, and
Chow
,
D. H. C.
,
2012
, “
Theoretical and Practical Analysis of an Integrated Solar Hot Water-Powered Absorption Cooling System
,”
Energy
,
39
(
1
), pp.
395
402
.
74.
Said
,
S. A. M.
,
El-Shaarawi
,
M. A. I.
, and
Siddiqui
,
M. U.
,
2015
, “
Analysis of a Solar Powered Absorption System
,”
Energy Convers. Manage.
,
97
, pp.
243
252
.
75.
Xu
,
Z. Y.
,
Wang
,
R. Z.
, and
Wang
,
H. B.
,
2015
, “
Experimental Evaluation of a Variable Effect LiBr-Water Absorption Chiller Designed for High-Efficient Solar Cooling System
,”
Int. J. Refrig.
,
59
, pp.
135
143
.
76.
Marc
,
O.
,
Sinama
,
F.
,
Praene
,
J. P.
,
Lucas
,
F.
, and
Castaing-Lasvignottes
,
J.
,
2015
, “
Dynamic Modeling and Experimental Validation Elements of a 30 KW LiBr/H2O Single Effect Absorption Chiller for Solar Application
,”
Appl. Therm. Eng.
,
90
, pp.
980
993
.
77.
Hang
,
Y.
,
Qu
,
M.
,
Winston
,
R.
,
Jiang
,
L.
,
Widyolar
,
B.
, and
Poiry
,
H.
,
2014
, “
Experimental Based Energy Performance Analysis and Life Cycle Assessment for Solar Absorption Cooling System at University of Californian, Merced
,”
Energy Build.
,
82
, pp.
746
757
.
78.
Goyal
,
P.
,
Baredar
,
P.
,
Mittal
,
A.
, and
Siddiqui
,
A. R.
,
2016
, “
Adsorption Refrigeration Technology—An Overview of Theory and its Solar Energy Applications
,”
Renew. Sust. Energy Rev.
,
53
, pp.
1389
1410
.
79.
Lei
,
L.
,
Keels
,
J. M.
,
Tao
,
Z.
,
Zhang
,
J.
, and
Chen
,
F.
,
2018
, “
Thermodynamic and Experimental Assessment of Proton Conducting Solid Oxide Fuel Cells With Internal Methane Steam Reforming
,”
Appl. Energy
,
224
, pp.
280
288
.
80.
Nemitallah
,
M. A.
,
Haque
,
M. A.
,
Hussain
,
M.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2022
, “
Stratified and Hydrogen Combustion Techniques for Higher Turndown and Lower Emissions in Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
020801
.
81.
Xu
,
B.
,
Bhawe
,
Y.
, and
Davis
,
M. E.
,
2012
, “
Low-Temperature, Manganese Oxide-Based, Thermochemical Water Splitting Cycle
,”
Proc. Natl. Acad. Sci. U S A
,
109
(
24
), pp.
9260
9264
.
82.
Fletcher
,
E. A.
,
2001
, “
“Solarthermal Processing: A Review,” Journal of Solar Energy Engineering
,”
Trans. ASME
,
123
(
2
), pp.
63
74
.
83.
Muhich
,
C. L.
,
Ehrhart
,
B. D.
,
Al-Shankiti
,
I.
,
Ward
,
B. J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2016
, “
A Review and Perspective of Efficient Hydrogen Generation via Solar Thermal Water Splitting
,”
Wiley Interdiscip. Rev. Energy Environ.
,
5
(
3
), pp.
261
287
.
84.
Rao
,
C. N. R.
, and
Dey
,
S.
,
2017
, “
Solar Thermochemical Splitting of Water to Generate Hydrogen
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
51
), pp.
13385
13393
.
85.
Dey
,
S.
,
Rajesh
,
S.
, and
Rao
,
C. N. R.
,
2016
, “
Significant Reduction in the Operating Temperature of the Mn(Ii)/Mn(Iii) Oxide-Based Thermochemical Water Splitting Cycle Brought About by the Use of Nanoparticles
,”
J. Mater. Chem. A: Mater.
,
4
(
43
), pp.
16830
16833
.
86.
Meredig
,
B.
, and
Wolverton
,
C.
,
2011
, “
Erratum: First-Principles Thermodynamic Framework for the Evaluation of Thermochemical H2O- or CO2-Splitting Materials
,”
Phys. Rev. B
,
83
(
23
), p.
239901
.
87.
Bhattacharyya
,
R.
,
Misra
,
A.
, and
Sandeep
,
K. C.
,
2017
, “
Photovoltaic Solar Energy Conversion for Hydrogen Production by Alkaline Water Electrolysis: Conceptual Design and Analysis
,”
Energy Convers. Manage.
,
133
, pp.
1
13
.
88.
Ager
,
J. W.
,
Shaner
,
M. R.
,
Walczak
,
K. A.
,
Sharp
,
I. D.
, and
Ardo
,
S.
,
2015
, “
Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting
,”
Energy Environ. Sci.
,
8
(
10
), pp.
2811
2824
.
89.
Buttler
,
A.
, and
Spliethoff
,
H.
,
2018
, “
Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling via Power-to-Gas and Power-to-Liquids: A Review
,”
Renew. Sust. Energy Rev.
,
82
(
September 2017
), pp.
2440
2454
.
90.
McKone
,
J. R.
,
Lewis
,
N. S.
, and
Gray
,
H. B.
,
2014
, “
Will Solar-Driven Water-Splitting Devices See the Light of Day?
,”
Chem. Mater.
,
26
(
1
), pp.
407
414
.
91.
Hwang
,
H. T.
, and
Varma
,
A.
,
2014
, “
Hydrogen Storage for Fuel Cell Vehicles
,”
Curr. Opin. Chem. Eng.
,
5
, pp.
42
48
.
92.
Züttel
,
A.
,
2003
, “
Materials for Hydrogen Storage
,”
Mater. Today
,
6
(
9
), pp.
24
33
.
93.
Karellas
,
S.
, and
Tzouganatos
,
N.
,
2014
, “
Comparison of the Performance of Compressed-Air and Hydrogen Energy Storage Systems: Karpathos Island Case Study
,”
Renew. Sust. Energy Rev.
,
29
, pp.
865
882
.
94.
Yartys
,
V. A.
, and
Lototsky
,
M. V.
,
2004
, “An Overview of Hydrogen Storage Methods,”
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials
,
S. V. V
Veziroglu
,
T. N.
Yu
,
S.
Zaginaichenko
,
D. V.
Schur
,
B.
Baranowski
, and
A. P.
Shpak
, eds.,
Springer
,
Dordrecht
, pp.
75
104
.
95.
Valenti
,
G.
,
2016
, “Hydrogen Liquefaction and Liquid Hydrogen Storage,”
Compendium of Hydrogen Energy
,
Elsevier
,
New York
, p.
27
51
.
96.
Felderhoff
,
M.
,
Weidenthaler
,
C.
,
von Helmolt
,
R.
, and
Eberle
,
U.
,
2007
, “
Hydrogen Storage: The Remaining Scientific and Technological Challenges
,”
Phys. Chem. Chem. Phys.
,
9
(
21
), p.
2643
.
97.
Abe
,
J. O.
,
Popoola
,
A. P. I.
,
Ajenifuja
,
E.
, and
Popoola
,
O. M.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15072
15086
.
98.
Van Den Berg
,
A. W. C.
, and
Areán
,
C. O.
,
2008
, “
Materials for Hydrogen Storage: Current Research Trends and Perspectives
,”
Chem. Commun.
, (
6
), pp.
668
681
.
99.
Ströbel
,
R.
,
Garche
,
J.
,
Moseley
,
P. T.
,
Jörissen
,
L.
, and
Wolf
,
G.
,
2006
, “
Hydrogen Storage by Carbon Materials
,”
J. Power Sources
,
159
(
2
), pp.
781
801
.
100.
Gholami
,
T.
,
Salavati-Niasari
,
M.
, and
Varshoy
,
S.
,
2016
, “
Investigation of the Electrochemical Hydrogen Storage and Photocatalytic Properties of CoAl2O4 Pigment: Green Synthesis and Characterization
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9418
9426
.
101.
Sangsefidi
,
F. S.
, and
Salavati-Niasari
,
M.
,
2018
, “
Fe2O3–CeO2 Ceramic Nanocomposite Oxide: Characterization and Investigation of the Effect of Morphology on its Electrochemical Hydrogen Storage Capacity
,”
ACS Appl. Energy Mater.
,
1
(
9
), pp.
4840
4848
.
102.
Krishna
,
R.
,
Titus
,
E.
,
Salimian
,
M.
,
Okhay
,
O.
,
Rajendran
,
S.
,
Rajkumar
,
A.
,
Sousa
,
G.
, et al
,
2012
, “Hydrogen Storage for Energy Application,”
Hydrogen Storage
,
InTech
,
Cambridge, UK
.
103.
DOE
,
2019
,
DOE Hydrogen and Fuel Cells Program: Annual Progress Report 2018 (DOE/GO-102019-5156)
,
Washington, DC
.
104.
Grochala
,
W.
, and
Edwards
,
P. P.
,
2004
, “
Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen
,”
Chem Rev
,
104
(
3
), pp.
1283
1316
.
105.
Rivard
,
E.
,
Trudeau
,
M.
, and
Zaghib
,
K.
,
2019
, “
Hydrogen Storage for Mobility: A Review
,”
Materials
,
12
(
12
), p.
1973
.
106.
Moradi
,
R.
, and
Groth
,
K. M.
,
2019
, “
Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12254
12269
.
107.
Berenguer-Murcia
,
Á
,
Marco-Lozar
,
J. P.
, and
Cazorla-Amorós
,
D.
,
2018
, “
Hydrogen Storage in Porous Materials: Status, Milestones, and Challenges
,”
Chem. Rec.
,
18
(
7–8
), pp.
900
912
.
108.
Klebanoff
,
L. E.
,
Ott
,
K. C.
,
Simpson
,
L. J.
,
O’Malley
,
K.
, and
Stetson
,
N. T.
,
2014
, “
Accelerating the Understanding and Development of Hydrogen Storage Materials: A Review of the Five-Year Efforts of the Three DOE Hydrogen Storage Materials Centers of Excellence
,”
Metall. Mater. Trans. E
,
1
(
2
), pp.
81
117
.
109.
Weitkamp
,
J.
,
1995
, “
Zeolites as Media for Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
20
(
12
), pp.
967
970
.
110.
Shet
,
S. P.
,
Shanmuga Priya
,
S.
,
Sudhakar
,
K.
, and
Tahir
,
M.
,
2021
, “
A Review on Current Trends in Potential Use of Metal-Organic Framework for Hydrogen Storage
,”
Int. J. Hydrogen Energy
, 46(21), pp.11782–11803.
111.
Germain
,
J.
,
Fréchet
,
J. M. J.
, and
Svec
,
F.
,
2009
, “
Nanoporous Polymers for Hydrogen Storage
,”
Small
,
5
(
10
), pp.
1098
1111
.
112.
Xia
,
Y.
,
Yang
,
Z.
, and
Zhu
,
Y.
,
2013
, “
Porous Carbon-Based Materials for Hydrogen Storage: Advancement and Challenges
,”
J. Mater. Chem. A: Mater.
,
1
(
33
), p.
9365
.
113.
Broom
,
D. P.
,
Webb
,
C. J.
,
Hurst
,
K. E.
,
Parilla
,
P. A.
,
Gennett
,
T.
,
Brown
,
C. M.
,
Zacharia
,
R.
, et al
,
2016
, “
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
,”
Appl. Phys. A
,
122
(
3
), p.
151
.
114.
Blankenship
,
T. S.
, and
Mokaya
,
R.
,
2017
, “
Cigarette Butt-Derived Carbons Have Ultra-High Surface Area and Unprecedented Hydrogen Storage Capacity
,”
Energy Environ. Sci.
,
10
(
12
), pp.
2552
2562
.
115.
Schlapbach
,
L.
, and
Züttel
,
A.
,
2001
, “
Hydrogen-Storage Materials for Mobile Applications
,”
Nature
,
414
(
6861
), pp.
353
358
.
116.
Demirci
,
U. B.
,
2018
, “
About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds
,”
Energy Technol.
,
6
(
3
), pp.
470
486
.
117.
Wang
,
P.
,
2012
, “
Solid-State Thermolysis of AmmoniaBorane and Related Materials for High-Capacity Hydrogen Storage
,”
Dalton Trans.
,
41
(
15
), pp.
4296
4302
.
118.
Graetz
,
J.
,
2012
, “
Metastable Metal Hydrides for Hydrogen Storage
,”
ISRN Mater. Sci.
,
2012
(
Figure 1
), pp.
1
18
.
119.
Klerke
,
A.
,
Christensen
,
C. H.
,
Nørskov
,
J. K.
, and
Vegge
,
T.
,
2008
, “
Ammonia for Hydrogen Storage: Challenges and Opportunities
,”
J. Mater. Chem.
,
18
(
20
), pp.
2304
2310
.
120.
Behrens
,
M.
, and
Armbrüster
,
M.
,
2012
, “Methanol Steam Reforming,”
Catalysis for Alternative Energy Generation
,
Springer New York
,
New York, NY
, pp.
175
235
.
121.
Grasemann
,
M.
, and
Laurenczy
,
G.
,
2012
, “
Formic Acid as a Hydrogen Source—Recent Developments and Future Trends
,”
Energy Environ. Sci.
,
5
(
8
), pp.
8171
8181
.
122.
Preuster
,
P.
,
Papp
,
C.
, and
Wasserscheid
,
P.
,
2017
, “
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-Free Hydrogen Economy
,”
Acc. Chem. Res.
,
50
(
1
), pp.
74
85
.
123.
Andersson
,
J.
, and
Grönkvist
,
S.
,
2019
, “
Large-Scale Storage of Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
11901
11919
.
124.
Gholami
,
T.
, and
Pirsaheb
,
M.
,
2021
, “
Review on Effective Parameters in Electrochemical Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
46
(
1
), pp.
783
795
.
125.
Masjedi-Arani
,
M.
, and
Salavati-Niasari
,
M.
,
2017
, “
Novel Synthesis of Zn2GeO4/Graphene Nanocomposite for Enhanced Electrochemical Hydrogen Storage Performance
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17184
17191
.
126.
Khoshnevisan
,
B.
,
Behpour
,
M.
, and
Shoaei
,
S.
,
2012
, “
Enhancement of Hydrogen Storage by Electrophoresis Deposition of CNTs Into Nanoscale Pores of Silver Foams
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2298
2303
.
127.
BP
,
2020
, Statistical Review of World Energy 2020, 69th ed.
128.
BP
,
2020
, “IEA Electricity Information 2020,” International Energy Agency (IEA). https://www.iea.org/fuels-and-technologies/electricity
129.
IPCC
,
2005
,
Special Report on Carbon Dioxide Capture and Storage
,
Cambridge University Press
,
Cambridge, UK
.
130.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2020
, “
Review of Fuel/Oxidizer-Flexible Combustion in Gas Turbines
,”
Energy Fuels
,
34
(
9
), pp.
10459
10485
.
131.
Mokheimer
,
E.
, and
Habib
,
M.
,
2021
, “Integrated Power Generation System.”
132.
Mokheimer
,
E. M. A.
, and
Habib
,
M. A. A.
,
2019
, “Method With Solar Assist to Capture Carbon Dioxide and Generate Electricity, Heat and Desalinated Water.”
133.
Luo
,
C.
, and
Zhang
,
N.
,
2012
, “
Zero CO2 Emission SOLRGT Power System
,”
Energy
,
45
(
1
), pp.
312
323
.
134.
Gunasekaran
,
S.
,
Mancini
,
N. D.
,
El-Khaja
,
R.
,
Sheu
,
E. J.
, and
Mitsos
,
A.
,
2014
, “
Solar-Thermal Hybridization of Advanced Zero Emissions Power Cycle
,”
Energy
,
65
, pp.
152
165
.
135.
Ishida
,
M.
, and
Jin
,
H.
,
1994
, “
A New Advanced Power-Generation System Using Chemical-Looping Combustion
,”
Energy
,
19
(
4
), pp.
415
422
.
136.
Hong
,
H.
, and
Jin
,
H.
,
2005
, “
A Novel Solar Thermal Cycle With Chemical Looping Combustion
,”
Int. J. Green Energy
,
2
(
4
), pp.
397
407
.
137.
Saghafifar
,
M.
, and
Gadalla
,
M.
,
2016
, “
Thermo-Economic Analysis of Conventional Combined Cycle Hybridization: United Arab Emirates Case Study
,”
Energy Convers. Manage.
,
111
, pp.
358
374
.
138.
Wang
,
J.
,
Zhao
,
J.
,
Wang
,
Y.
,
Deng
,
S.
,
Sun
,
T.
, and
Li
,
K.
,
2017
, “
Application Potential of Solar-Assisted Post-Combustion Carbon Capture and Storage (CCS) in China: A Life Cycle Approach
,”
J. Clean. Prod.
,
154
, pp.
541
552
.
139.
Parvareh
,
F.
,
Milani
,
D.
,
Sharma
,
M.
,
Chiesa
,
M.
, and
Abbas
,
A.
,
2015
, “
Solar Repowering of PCC-Retrofitted Power Plants; Solar Thermal Plant Dynamic Modelling and Control Strategies
,”
Sol. Energy
,
119
, pp.
507
530
.
140.
Zhao
,
Y.
,
Hong
,
H.
,
Zhang
,
X.
, and
Jin
,
H.
,
2012
, “
Integrating Mid-Temperature Solar Heat and Post-Combustion CO2-Capture in a Coal-Fired Power Plant
,”
Sol. Energy
,
86
(
11
), pp.
3196
3204
.
141.
Wibberley
,
L.
, and
Suburb
,
G.
,
2006
, “CO2 Capture Using Solar Thermal Energy.”
142.
Zhang
,
X.
, and
Liu
,
Y.
,
2014
, “
Performance Assessment of CO2 Capture With Calcination Carbonation Reaction Process Driven by Coal and Concentrated Solar Power
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
13
24
.
143.
Reich
,
L.
,
Melmoth
,
L.
,
Yue
,
L.
,
Bader
,
R.
,
Gresham
,
R.
,
Simon
,
T.
, and
Lipiński
,
W.
,
2017
, “
A Solar Reactor Design for Research on Calcium Oxide-Based Carbon Dioxide Capture
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
054501
.
144.
Matthews
,
L.
, and
Lipiński
,
W.
,
2012
, “
Thermodynamic Analysis of Solar Thermochemical CO2 Capture via Carbonation/Calcination Cycle With Heat Recovery
,”
Energy
,
45
(
1
), pp.
900
907
.
You do not currently have access to this content.