Abstract

Thermal energy storage (TES) plays a pivotal role in a wide array of energy systems, offering a highly effective means to harness renewable energy sources, trim energy consumption and costs, reduce environmental impact, and bolster the adaptability and dependability of power grids. Concurrently, artificial intelligence (AI) has risen in prominence for optimizing and fine-tuning TES systems. Various AI techniques, such as particle swarm optimization, artificial neural networks, support vector machines, and adaptive neurofuzzy inference systems, have been extensively explored in the realm of energy storage. This study provides a comprehensive overview of how AI, across diverse applications, categorizes, and optimizes energy systems. The study critically evaluates the effectiveness of these AI technologies, highlighting their impressive accuracy in achieving a range of objectives. Through a thorough analysis, the paper also offers valuable recommendations and outlines future research directions, aiming to inspire innovative concepts and advancements in leveraging AI for TESS. By bridging the gap between TES and AI techniques, this study contributes significantly to the progress of energy systems, enhancing their efficiency, reliability, and sustainability. The insights gleaned from this research will be invaluable for researchers, engineers, and policymakers, aiding them in making well-informed decisions regarding the design, operation, and management of energy systems integrated with TES.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chekifi
,
T.
, and
Boukraa
,
M.
,
2022
, “
Thermocline Storage for Concentrated Solar Power Plants: Descriptive Review and Critical Analysis
,”
J. Energy Storage
,
55
(
Part D
), p.
105773
.
2.
Maghrabie
,
H. M.
,
Elsaid
,
K.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
, and
Olabi
,
A.
,
2021
, “
Building-Integrated Photovoltaic/Thermal (BIPVT) Systems: Applications and Challenges
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101151
.
3.
Brough
,
D.
,
Ramos
,
J.
,
Delpech
,
B.
, and
Jouhara
,
H.
,
2021
, “
Development and Validation of a TRNSYS Type to Simulate Heat Pipe Heat Exchangers in Transient Applications of Waste Heat Recovery
,”
Int. J. Thermofluids
,
9
, p.
100056
.
4.
Agathokleous
,
R.
,
Bianchi
,
G.
,
Panayiotou
,
G.
,
Aresti
,
L.
,
Argyrou
,
M. C.
,
Georgiou
,
G. S.
,
Tassou
,
S. A.
, et al
,
2019
, “
Waste Heat Recovery in the EU Industry and Proposed new Technologies
,”
Energy Procedia
,
161
, pp.
489
496
.
5.
Zhu
,
S.
,
Zhang
,
K.
, and
Deng
,
K.
,
2020
, “
A Review of Waste Heat Recovery From the Marine Engine With Highly Efficient Bottoming Power Cycles
,”
Renewable Sustainable Energy Rev.
,
120
, p.
109611
.
6.
Fernández
,
A. I.
,
Barreneche
,
C.
,
Miró
,
L.
,
Brückner
,
S.
, and
Cabeza
,
L. F.
,
2021
, “Waste Heat Recovery Using Thermal Energy Storage,”
Advances in Thermal Energy Storage Systems
,
Elsevier
,
Cambridge
, pp.
639
653
.
7.
Brückner
,
S.
,
Liu
,
S.
,
Miró
,
L.
,
Radspieler
,
M.
,
Cabeza
,
L. F.
, and
Lävemann
,
E.
,
2015
, “
Industrial Waste Heat Recovery Technologies: An Economic Analysis of Heat Transformation Technologies
,”
Appl. Energy
,
151
, pp.
157
167
.
8.
Hanif
,
M. B.
,
Motola
,
M.
,
Rauf
,
S.
,
Li
,
C.-J.
, and
Li
,
C.-X.
,
2022
, “
Recent Advancements, Doping Strategies and the Future Perspective of Perovskite-Based Solid Oxide Fuel Cells for Energy Conversion
,”
Chem. Eng. J.
,
428
, p.
132603
.
9.
Loni
,
R.
,
Najafi
,
G.
,
Bellos
,
E.
,
Rajaee
,
F.
,
Said
,
Z.
, and
Mazlan
,
M.
,
2021
, “
A Review of Industrial Waste Heat Recovery System for Power Generation With Organic Rankine Cycle: Recent Challenges and Future Outlook
,”
J. Cleaner Prod.
,
287
, p.
125070
.
10.
Wu
,
C.
,
Yan
,
X.-J.
,
Wang
,
S.-S.
,
Bai
,
K.-L.
,
Di
,
J.
,
Cheng
,
S.-F.
, and
Li
,
J.
,
2016
, “
System Optimisation and Performance Analysis of CO2 Transcritical Power Cycle for Waste Heat Recovery
,”
Energy
,
100
, pp.
391
400
.
11.
Miró
,
L.
,
Gasia
,
J.
, and
Cabeza
,
L. F.
,
2016
, “
Thermal Energy Storage (TES) for Industrial Waste Heat (IWH) Recovery: A Review
,”
Appl. Energy
,
179
, pp.
284
301
.
12.
Wang
,
Q.
,
2015
,
Cheaper Oil–Challenge and Opportunity for Climate Change
,
ACS Publications
.
13.
Chekifi
,
T.
, and
Boukraa
,
M.
,
2023
, “
Solar Still Productivity Improvement Using Nanofluids: A Comprehensive Review
,”
Int. J. Ambient Energy
,
44
(
1
), pp.
1
103
.
14.
Rezaeian
,
M.
,
Dehaj
,
M. S.
,
Mohiabadi
,
M. Z.
,
Salarmofrad
,
M.
, and
Shamsi
,
S.
,
2021
, “
Experimental Investigation Into a Parabolic Solar Collector With Direct Flow Evacuated Tube
,”
Appl. Therm. Eng.
,
189
, p.
116608
.
15.
Kumar
,
S.
, and
Tiwari
,
A.
,
2010
, “
Design, Fabrication and Performance of a Hybrid Photovoltaic/Thermal (PV/T) Active Solar Still
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1219
1229
.
16.
Boretti
,
A.
,
Castelletto
,
S.
,
Al-Kouz
,
W.
, and
Nayfeh
,
J.
,
2020
, “
Capacity Factors of Solar Photovoltaic Energy Facilities in California, Annual Mean and Variability
,”
E3S Web Conf.
,
181
, p.
02004
.
17.
Kuo
,
M.-T.
, and
Lo
,
W.-Y.
,
2014
, “
A Combination of Concentrator Photovoltaics and Water Cooling System to Improve Solar Energy Utilization
,”
IEEE Trans. Ind. Appl.
,
50
(
4
), pp.
2818
2827
.
18.
Haehnlein
,
S.
,
Bayer
,
P.
, and
Blum
,
P.
,
2010
, “
International Legal Status of the use of Shallow Geothermal Energy
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2611
2625
.
19.
Winkelmann
,
U.
,
Kämper
,
C.
,
Höffer
,
R.
,
Forman
,
P.
,
Ahrens
,
M. A.
, and
Mark
,
P.
,
2020
, “
Wind Actions on Large-Aperture Parabolic Trough Solar Collectors: Wind Tunnel Tests and Structural Analysis
,”
Renewable Energy
,
146
, pp.
2390
2407
.
20.
Paetzold
,
J.
,
Cochard
,
S.
,
Vassallo
,
A.
, and
Fletcher
,
D.
,
2014
, “
Wind Engineering Analysis of Parabolic Trough Solar Collectors: The Effects of Varying the Trough Depth
,”
J. Wind Eng. Ind. Aerodyn.
,
135
, pp.
118
128
.
21.
Kocijel
,
L.
,
2022
, “
Geometry Change Impact on Thermal Efficiency with Large Volumetric Sensible Heat Storage Tank
,”
Energy Storage
,
4
(
3
), p.
e323
.
22.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2021
,
Thermal Energy Storage Systems and Applications
,
John Wiley & Sons
.
23.
Shen
,
Y.
,
Qian
,
J.-Y.
,
Fan
,
L.
,
Sun
,
Z.
, and
Sundén
,
B.
,
2022
, “
Enhanced Temperature Stratification With Deflectors Laid Within the Horizontal Water Storage Tank
,”
Heat Transfer Eng.
,
44
(
20
), pp.
1
000
.
24.
Baocun
,
D.
,
Huang
,
L.
,
Yonggang
,
L.
,
Chongfang
,
S.
, and
Fei
,
W.
,
2022
, “
Dynamic Study on the Thermal and Stress Performances of the Molten Salt Packed-Bed Thermal Storage Tank
,”
Energy Storage Sci. Technol.
,
11
(
7
), p.
2141
.
25.
Huang
,
L.
,
Du
,
B.
, and
Lei
,
Y.
,
2022
, “
Coupled Thermal and Mechanical Dynamic Performances of the Molten Salt Packed-Bed Thermal Energy Storage System
,”
J. Therm. Sci.
,
31
(
5
), pp.
1337
1350
.
26.
Afif
,
A.
,
Rahman
,
S. M.
,
Azad
,
A. T.
,
Zaini
,
J.
,
Islan
,
M. A.
, and
Azad
,
A. K.
,
2019
, “
Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review
,”
J. Energy Storage
,
25
, p.
100852
.
27.
Salanne
,
M.
,
Rotenberg
,
B.
,
Naoi
,
K.
,
Kaneko
,
K.
,
Taberna
,
P.-L.
,
Grey
,
C. P.
,
Dunn
,
B.
, and
Simon
,
P.
,
2016
, “
Efficient Storage Mechanisms for Building Better Supercapacitors
,”
Nat. Energy
,
1
(
6
), pp.
1
10
.
28.
Kim
,
B. K.
,
Sy
,
S.
,
Yu
,
A.
, and
Zhang
,
J.
,
2015
, “Electrochemical Supercapacitors for Energy Storage and Conversion,”
Handbook of Clean Energy Systems
, pp.
1
25
.
29.
Libich
,
J.
,
Máca
,
J.
,
Vondrák
,
J.
,
Čech
,
O.
, and
Sedlaříková
,
M.
,
2018
, “
Supercapacitors: Properties and Applications
,”
J. Energy Storage
,
17
, pp.
224
227
.
30.
Zhang
,
C.
,
Wei
,
Y.-L.
,
Cao
,
P.-F.
, and
Lin
,
M.-C.
,
2018
, “
Energy Storage System: Current Studies on Batteries and Power Condition System
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3091
3106
.
31.
Abraham
,
K.
,
2015
, “
Prospects and Limits of Energy Storage in Batteries
,”
J. Phys. Chem. Lett.
,
6
(
5
), pp.
830
844
.
32.
Dehghani-Sanij
,
A.
,
Tharumalingam
,
E.
,
Dusseault
,
M.
, and
Fraser
,
R.
,
2019
, “
Study of Energy Storage Systems and Environmental Challenges of Batteries
,”
Renewable Sustainable Energy Rev.
,
104
, pp.
192
208
.
33.
Doughty
,
D. H.
,
Butler
,
P. C.
,
Akhil
,
A. A.
,
Clark
,
N. H.
, and
Boyes
,
J. D.
,
2010
, “
Batteries for Large-Scale Stationary Electrical Energy Storage
,”
Electrochem. Soc. Interface
,
19
(
3
), pp.
49
53
.
34.
Temiz
,
M.
, and
Dincer
,
I.
,
2021
, “
Concentrated Solar Driven Thermochemical Hydrogen Production Plant With Thermal Energy Storage and Geothermal Systems
,”
Energy
,
219
, p.
119554
.
35.
Chen
,
X.
,
Zhang
,
Z.
,
Qi
,
C.
,
Ling
,
X.
, and
Peng
,
H.
,
2018
, “
State of the Art on the High-Temperature Thermochemical Energy Storage Systems
,”
Energy Convers. Manage.
,
177
, pp.
792
815
.
36.
Aydin
,
D.
,
Casey
,
S. P.
, and
Riffat
,
S.
,
2015
, “
The Latest Advancements on Thermochemical Heat Storage Systems
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
356
367
.
37.
Calabrese
,
L.
,
Brancato
,
V.
,
Palomba
,
V.
,
Frazzica
,
A.
, and
Cabeza
,
L. F.
,
2019
, “
Magnesium Sulphate-Silicone Foam Composites for Thermochemical Energy Storage: Assessment of Dehydration Behaviour and Mechanical Stability
,”
Sol. Energy Mater. Sol. Cells
,
200
, p.
109992
.
38.
Ochmann
,
J.
,
Rusin
,
K.
,
Rulik
,
S.
,
Waniczek
,
S.
, and
Bartela
,
Ł
,
2022
, “
Experimental and Computational Analysis of Packed-Bed Thermal Energy Storage Tank Designed for Adiabatic Compressed air Energy Storage System
,”
Appl. Therm. Eng.
,
213
, p.
118750
.
39.
Ortega-Fernández
,
I.
,
Zavattoni
,
S. A.
,
Rodríguez-Aseguinolaza
,
J.
,
D’Aguanno
,
B.
, and
Barbato
,
M. C.
,
2017
, “
Analysis of an Integrated Packed bed Thermal Energy Storage System for Heat Recovery in Compressed Air Energy Storage Technology
,”
Appl. Energy
,
205
, pp.
280
293
.
40.
Borri
,
E.
,
Tafone
,
A.
,
Comodi
,
G.
,
Romagnoli
,
A.
, and
Cabeza
,
L. F.
,
2022
, “
Compressed Air Energy Storage—An Overview of Research Trends and Gaps Through a Bibliometric Analysis
,”
Energies
,
15
(
20
), p.
7692
.
41.
Fertahi
,
S. E.-D.
,
Bouhal
,
T.
,
Arid
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
,
Moujibi
,
N.
, and
Benbassou
,
A.
,
2017
, “
Thermo-Mechanical Strength Analysis for Energy Storage Improvement of Horizontal Storage Tanks Integrating Evacuated Tube Collectors
,”
Int. J. Hydrogen Energy
,
42
(
49
), pp.
29370
29383
.
42.
Faraji
,
F.
,
Majazi
,
A.
, and
Al-Haddad
,
K.
,
2017
, “
A Comprehensive Review of Flywheel Energy Storage System Technology
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
477
490
.
43.
Liu
,
H.
, and
Jiang
,
J.
,
2007
, “
Flywheel Energy Storage—An Upswing Technology for Energy Sustainability
,”
Energy Build.
,
39
(
5
), pp.
599
604
.
44.
Rehman
,
S.
,
Al-Hadhrami
,
L. M.
, and
Alam
,
M. M.
,
2015
, “
Pumped Hydro Energy Storage System: A Technological Review
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
586
598
.
45.
Yang
,
L.
,
Xu
,
H.
,
Cola
,
F.
,
Akhmetov
,
B.
,
Gil
,
A.
,
Cabeza
,
L. F.
, and
Romagnoli
,
A.
,
2021
, “
Shell-and-Tube Latent Heat Thermal Energy Storage Design Methodology With Material Selection, Storage Performance Evaluation, and Cost Minimization
,”
Appl. Sci.
,
11
(
9
), p.
4180
.
46.
Koçak
,
B.
,
Fernandez
,
A. I.
, and
Paksoy
,
H.
,
2020
, “
Review on Sensible Thermal Energy Storage for Industrial Solar Applications and Sustainability Aspects
,”
Sol. Energy
,
209
, pp.
135
169
.
47.
Gibb
,
D.
,
Seitz
,
A.
,
Johnson
,
M.
,
Romani
,
J.
,
Gasia
,
J.
,
Gabeza
,
L. F.
,
Gurtner
,
R.
, and
Vandersickel
,
A.
,
2018
, “
Public Report of IEA ECES Annex 30
,” International Energy Agency’s Technology Collaboration Programme.
48.
Chekifi
,
T.
, and
Boukraa
,
M.
,
2023
, “
CFD Applications for Sensible Heat Storage: A Comprehensive Review of Numerical Studies
,”
J. Energy Storage
,
68
, p.
107893
.
49.
Yazici
,
M. Y.
,
Saglam
,
M.
,
Aydin
,
O.
, and
Avci
,
M.
,
2021
, “
Thermal Energy Storage Performance of PCM/Graphite Matrix Composite in a Tube-in-Shell Geometry
,”
Ther. Sci. Eng. Prog.
,
23
, p.
100915
.
50.
Liang
,
H.
,
Niu
,
J.
, and
Gan
,
Y.
,
2020
, “
Performance Optimization for Shell-and-Tube PCM Thermal Energy Storage
,”
J. Energy Storage
,
30
, p.
101421
.
51.
Shamsi
,
H.
,
Boroushaki
,
M.
, and
Geraei
,
H.
,
2017
, “
Performance Evaluation and Optimization of Encapsulated Cascade PCM Thermal Storage
,”
J. Energy Storage
,
11
, pp.
64
75
.
52.
Chekifi
,
T.
, and
Boukraa
,
M.
,
2022
, “
Thermal Efficiency Enhancement of Parabolic Trough Collectors: A Review
,”
J. Therm. Anal. Calorim.
,
147
(
20
), pp.
10923
10942
.
53.
Bauer
,
K.
,
Bolzmacher
,
C.
,
Friedberger
,
A.
, and
Reidt
,
U.
,
2011
,
Self-Cleaning Surfaces
,
Google Patents
.
54.
Elhashmi
,
R.
,
Hallinan
,
K. P.
, and
Chiasson
,
A. D.
,
2020
, “
Low-Energy Opportunity for Multi-Family Residences: A Review and Simulation-Based Study of a Solar Borehole Thermal Energy Storage System
,”
Energy
,
204
, p.
117870
.
55.
Rostampour
,
V.
,
Jaxa-Rozen
,
M.
,
Bloemendal
,
M.
,
Kwakkel
,
J.
, and
Keviczky
,
T.
,
2019
, “
Aquifer Thermal Energy Storage (ATES) Smart Grids: Large-Scale Seasonal Energy Storage as a Distributed Energy Management Solution
,”
Appl. Energy
,
242
, pp.
624
639
.
56.
Kalita
,
P.
,
Kashyap
,
D.
, and
Bordoloi
,
U.
,
2021
,
Thermal Energy Storage Systems for Cooling and Heating Applications
,
Wiley
, pp.
149
199
.
57.
Nordell
,
B.
,
Snijders
,
A.
, and
Stiles
,
L.
,
2021
, “The Use of Aquifers as Thermal Energy Storage Systems,”
Advances in Thermal Energy Storage Systems
,
Elsevier
, pp.
111
138
.
58.
Ali
,
M. M.
,
Ahmed
,
O. K.
, and
Abbas
,
E. F.
,
2020
, “
Performance of Solar Pond Integrated With Photovoltaic/Thermal Collectors
,”
Energy Rep.
,
6
, pp.
3200
3211
.
59.
Zhang
,
C.
, and
Lu
,
Y.
,
2021
, “
Study on Artificial Intelligence: The State of the art and Future Prospects
,”
J. Ind. Inf. Integr.
,
23
, p.
100224
.
60.
Goralski
,
M. A.
, and
Tan
,
T. K.
,
2020
, “
Artificial Intelligence and Sustainable Development
,”
Int. J. Educ. Manag.
,
18
(
1
), p.
100330
.
61.
Michalski
,
R. S.
,
Carbonell
,
J. G.
, and
Learning
,
T.
,
1983
, “
An Artificial Intelligence Approach
,”
Understanding Nat. Learn.
,
2
, pp.
3
26
.
62.
Duggal
,
N.
,
2021
,
Advantages and Disadvantages of Artificial Intelligence
,
Simplilearn
. https://www.simplilearn.com/advantages-and-disadvantages-of...
63.
Wittke
,
H. A.
,
2020
,
Artificial Intelligence: An Approach to Assess the Impact on the Information Economy
,
Tectum Wissenschaftsverlag
.
64.
Shehab
,
M.
,
Abualigah
,
L.
,
Jarrah
,
M. I.
,
Alomari
,
O. A.
, and
Daoud
,
M. S.
,
2020
, “
(AIAM2019) Artificial Intelligence in Software Engineering and Inverse
,”
Int. J. Comput. Integr. Manuf.
,
33
(
10–11
), pp.
1129
1144
.
65.
Pham
,
D.
, and
Pham
,
P.
,
1999
, “
Artificial Intelligence in Engineering
,”
Int. J. Mach. Tools Manuf.
,
39
(
6
), pp.
937
949
.
66.
Salehi
,
H.
, and
Burgueño
,
R.
,
2018
, “
Emerging Artificial Intelligence Methods in Structural Engineering
,”
Eng. Struct.
,
171
, pp.
170
189
.
67.
Nti
,
I. K.
,
Adekoya
,
A. F.
,
Weyori
,
B. A.
, and
Nyarko-Boateng
,
O.
,
2022
, “
Applications of Artificial Intelligence in Engineering and Manufacturing: A Systematic Review
,”
J. Intell. Manuf.
,
33
(
6
), pp.
1581
1601
.
68.
Wiafe
,
I.
,
Koranteng
,
F. N.
,
Obeng
,
E. N.
,
Assyne
,
N.
,
Wiafe
,
A.
, and
Gulliver
,
S. R.
,
2020
, “
Artificial Intelligence for Cybersecurity: A Systematic Mapping of Literature
,”
IEEE Access
,
8
, pp.
146598
146612
.
69.
Sharma
,
D. K.
,
Mishra
,
J.
,
Singh
,
A.
,
Govil
,
R.
,
Srivastava
,
G.
, and
Lin
,
J. C.-W.
,
2022
, “
Explainable Artificial Intelligence for Cybersecurity
,”
Comput. Electr. Eng.
,
103
, p.
108356
.
70.
Truong
,
T. C.
,
Zelinka
,
I.
,
Plucar
,
J.
,
Čandík
,
M.
, and
Šulc
,
V.
,
2020
, “
Artificial Intelligence and Cybersecurity: Past, Presence, and Future
,”
Artif. Intell. Evol. Comput. Eng. Syst.
pp.
351
363
, p.
1056
.
71.
Verma
,
S.
, and
Gupta
,
N.
,
2019
, “
Application of Artificial Intelligence in Cybersecurity
,”
Innovations in Computer Science and Engineering: Proceedings of 7th ICICSE
,
Hyderabad, Telangana, India
,
Aug. 16–17
, pp.
65
72
.
72.
Taddeo
,
M.
,
2019
, “
Three Ethical Challenges of Applications of Artificial Intelligence in Cybersecurity
,”
Minds Mach.
,
29
(
2
), pp.
187
191
.
73.
Mintz
,
Y.
, and
Brodie
,
R.
,
2019
, “
Introduction to Artificial Intelligence in Medicine
,”
Minim. Invasive Ther. Allied Technol.
,
28
(
2
), pp.
73
81
.
74.
Becker
,
A.
,
2019
, “
"Artificial Intelligence in Medicine: What Is It Doing for Us Today?
,”
Health Policy Technol.
,
8
(
2
), pp.
198
205
.
75.
Hamet
,
P.
, and
Tremblay
,
J.
,
2017
, “
Artificial Intelligence in Medicine
,”
Metabolism
,
69
, pp.
S36
S40
.
76.
Bešinović
,
N.
,
De Donato
,
L.
,
Flammini
,
F.
,
Goverde
,
R. M. P.
,
Lin
,
Z.
,
Liu
,
R.
,
Marrone
,
S.
,
Nardone
,
R.
,
Tang
,
T.
, and
Vittorini
,
V.
,
2021
, “
Artificial Intelligence in Railway Transport: Taxonomy, Regulations, and Applications
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
9
), pp.
14011
14024
.
77.
Machin
,
M.
,
Sanguesa
,
J. A.
,
Garrido
,
P.
, and
Martinez
,
F. J.
,
2018
, “
On the Use of Artificial Intelligence Techniques in Intelligent Transportation Systems
,”
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)
,
Barcelona, Spain
, IEEE, pp.
332
337
.
78.
Cândido
,
S.
, and
Páscoa
,
J. C.
,
2023
, “
On Modal Decomposition as Surrogate for Charge-Conservative EHD Modelling of Taylor Cone Jets
,”
Int. J. Eng. Sci.
,
193
, p.
103947
.
79.
Pendar
,
M.
,
Cândido
,
S.
, and
Páscoa
,
J. C.
,
2023
, “
Optimization of Painting Efficiency Applying Unique Techniques of High-Voltage Conductors and Nitrotherm Spray: Developing Deep Learning Models Using Computational Fluid Dynamics Dataset
,”
Phys. Fluids
,
35
(
7
), p.
075119
.
80.
Samy
,
M.
,
Almamlook
,
R. E.
,
Elkhouly
,
H. I.
, and
Barakat
,
S.
,
2022
, “
Decision-Making and Optimal Design of Green Energy System Based on Statistical Methods and Artificial Neural Network Approaches
,”
Sustain. Cities Soc.
,
84
, p.
104015
.
81.
Huang
,
J.
,
Zhang
,
X.
, and
Zhao
,
B.
,
2019
, “
Simplified Resonant Parameter Design of the Asymmetrical CLLC-Type DC Transformer in the Renewable Energy System via Semi-Artificial Intelligent Optimal Scheme
,”
IEEE Trans. Power Electron.
,
35
(
2
), pp.
1548
1562
.
82.
Tomazzoli
,
C.
,
Scannapieco
,
S.
, and
Cristani
,
M.
,
2020
, “
Internet of Things and Artificial Intelligence Enable Energy Efficiency
,”
J. Ambient Intell. Humaniz. Comput.
,
14
, pp.
1
22
.
83.
Garcés
,
H. O.
,
Abreu
,
J.
,
Gómez
,
P.
,
Carrasco
,
C.
,
Arias
,
L.
,
Rojas
,
A. J.
, and
Fuentes
,
A.
,
2017
, “
Energy Efficiency Monitoring in a Coal Boiler Based on Optical Variables and Artificial Intelligence
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
13904
13909
.
84.
Massaro
,
A.
,
Selicato
,
S.
,
Miraglia
,
R.
,
Panarese
,
A.
,
Calicchio
,
A.
, and
Galiano
,
A.
,
2020
, “
Production Optimization Monitoring System Implementing Artificial Intelligence and Big Data
,”
Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT
,
Roma, Italy
,
June 3–5
, IEEE, pp.
570
575
.
85.
Raza
,
M. Q.
, and
Khosravi
,
A.
,
2015
, “
A Review on Artificial Intelligence Based Load Demand Forecasting Techniques for Smart Grid and Buildings
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
1352
1372
.
86.
Lipu
,
M. H.
,
Miah
,
M. S.
,
Hannan
,
M. A.
,
Hussain
,
A.
,
Sarker
,
M. R.
,
Ayob
,
A.
,
Saad
,
M. H. M.
, and
Mahmud
,
M. S.
,
2021
, “
Artificial Intelligence Based Hybrid Forecasting Approaches for Wind Power Generation: Progress, Challenges and Prospects
,”
IEEE Access
,
9
, pp.
102460
102489
.
87.
Wang
,
H.
,
Liu
,
Y.
,
Zhou
,
B.
,
Li
,
C.
,
Cao
,
G.
,
Voropai
,
N.
, and
Barakhtenko
,
E.
,
2020
, “
Taxonomy Research of Artificial Intelligence for Deterministic Solar Power Forecasting
,”
Energy Convers. Manage.
,
214
, p.
112909
.
88.
Zaaoumi
,
A.
,
Bah
,
A.
,
Ciocan
,
M.
,
Sebastian
,
P.
,
Balan
,
M. C.
,
Mechaqrane
,
A.
, and
Alaoui
,
M.
,
2021
, “
Estimation of the Energy Production of a Parabolic Trough Solar Thermal Power Plant Using Analytical and Artificial Neural Networks Models
,”
Renewable Energy
,
170
, pp.
620
638
.
89.
Abdalla
,
A. N.
,
Nazir
,
M. S.
,
Tao
,
H.
,
Cao
,
S.
,
Ji
,
R.
,
Jiang
,
M.
, and
Yao
,
L.
,
2021
, “
Integration of Energy Storage System and Renewable Energy Sources Based on Artificial Intelligence: An Overview
,”
J. Energy Storage
,
40
, p.
102811
.
90.
Barrett
,
D. H.
, and
Haruna
,
A.
,
2020
, “
Artificial Intelligence and Machine Learning for Targeted Energy Storage Solutions
,”
Curr. Opin. Electrochem.
,
21
, pp.
160
166
.
91.
Kalogirou
,
S.
,
2007
,
Artificial Intelligence in Energy and Renewable Energy Systems
,
Nova Publishers
.
92.
Bagdadee
,
A. H.
,
Zhang
,
L.
, and
Saddam Hossain Remus
,
M.
,
2020
, “
A Brief Review of the IoT-Based Energy Management System in the Smart Industry
,”
Artif. Intell. Evol. Comput. Eng. Syst.
,
1056
, pp.
443
459
.
93.
Dincer
,
I.
, and
Erdemir
,
D.
,
2021
,
Heat Storage Systems for Buildings
,
Elsevier
,
New York
.
94.
Mtibaa
,
F.
,
Nguyen
,
K.-K.
,
Dermardiros
,
V.
,
McDonald
,
S.
,
Venne
,
J.-S.
, and
Cheriet
,
M.
,
2023
, “
Hierarchical Multi-Agent Control Framework for Energy Efficiency and Carbon Emission Reduction in Multi-Zone Buildings
,”
J. Build. Eng.
,
68
, p.
106204
.
95.
Liu
,
J.
,
Tavakoli
,
F.
,
Sajadi
,
S. M.
,
Mahmoud
,
M. Z.
,
Heidarshenas
,
B.
, and
Aybar
,
,
2022
, “
Numerical Evaluation and Artificial Neural Network Modeling of the Effect of Oval PCM Compartment Dimensions Around a Triple Lithium-ion Battery Pack Despite Forced Airflow
,”
Eng. Anal. Boundary Elem.
,
142
, pp.
71
92
.
96.
Pintaldi
,
S.
,
Perfumo
,
C.
,
Sethuvenkatraman
,
S.
,
White
,
S.
, and
Rosengarten
,
G.
,
2015
, “
A Review of Thermal Energy Storage Technologies and Control Approaches for Solar Cooling
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
975
995
.
97.
Aneke
,
M.
, and
Wang
,
M.
,
2016
, “
Energy Storage Technologies and Real Life Applications–A State of the art Review
,”
Appl. Energy
,
179
, pp.
350
377
.
98.
Safari
,
A.
,
Saidur
,
R.
,
Sulaiman
,
F.
,
Xu
,
Y.
, and
Dong
,
J.
,
2017
, “
A Review on Supercooling of Phase Change Materials in Thermal Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
905
919
.
99.
Pereira Da Cunha
,
J.
, and
Eames
,
P.
,
2016
, “
Thermal Energy Storage for low and Medium Temperature Applications Using Phase Change Materials–A Review
,”
Appl. Energy
,
177
, pp.
227
238
.
100.
Gasia
,
J.
,
Miró
,
L.
, and
Cabeza
,
L. F.
,
2017
, “
Review on System and Materials Requirements for High Temperature Thermal Energy Storage. Part 1: General Requirements
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
1320
1338
.
101.
Tatsidjodoung
,
P.
,
Le Pierrès
,
N.
, and
Luo
,
L.
,
2013
, “
A Review of Potential Materials for Thermal Energy Storage in Building Applications
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
327
349
.
102.
Ahmad
,
A. S.
,
Hassan
,
M. Y.
,
Abdullah
,
M. P.
,
Rahman
,
H. A.
,
Hussin
,
F.
,
Abdullah
,
H.
, and
Saidur
R.
,
2014
, “
A Review on Applications of ANN and SVM for Building Electrical Energy Consumption Forecasting
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
102
109
.
103.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Abd Elaziz
,
M.
,
Kabeel
,
A.
,
Guilan
,
W.
, and
Haiou
,
Z.
,
2019
, “
Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review
,”
Sol. Energy
,
180
, pp.
622
639
.
104.
Ermis
,
K.
,
Erek
,
A.
, and
Dincer
,
I.
,
2007
, “
Heat Transfer Analysis of Phase Change Process in a Finned-Tube Thermal Energy Storage System Using Artificial Neural Network
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3163
3175
.
105.
He
,
Z.
,
Guo
,
W.
, and
Zhang
,
P.
,
2022
, “
Performance Prediction, Optimal Design and Operational Control of Thermal Energy Storage Using Artificial Intelligence Methods
,”
Renewable Sustainable Energy Rev.
,
156
, p.
111977
.
106.
Mohd Adnan
,
M.
,
Sarkheyli
,
A.
,
Mohd Zain
,
A.
, and
Haron
,
H.
,
2015
, “
Fuzzy Logic for Modeling Machining Process: A Review
,”
Artif. Intell. Rev.
,
43
(
3
), pp.
345
379
.
107.
Zadeh
,
L. A.
,
2023
, “Fuzzy Logic,”
Granular, Fuzzy, and Soft Computing
,
Springer
,
New York
, pp.
19
49
.
108.
Zeinalnezhad
,
M.
,
Chofreh
,
A. G.
,
Goni
,
F. A.
, and
Klemeš
,
J. J.
,
2020
, “
Air Pollution Prediction Using Semi-Experimental Regression Model and Adaptive Neuro-Fuzzy Inference System
,”
J. Cleaner Prod.
,
261
, p.
121218
.
109.
Sonmez
,
A. Y.
,
Kale
,
S.
,
Ozdemir
,
R. C.
, and
Kadak
,
A. E.
,
2018
, “
An Adaptive Neuro-Fuzzy Inference System (ANFIS) to Predict of Cadmium (Cd) Concentrations in the Filyos River, Turkey
,”
Turk. J. Fish. Aquat. Sci.
,
18
(
12
), pp.
1333
1343
.
110.
Jang
,
J.-S.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
3
), pp.
665
685
.
111.
Olabi
,
A. G.
,
Abdelghafar
,
A. A.
,
Maghrabie
,
H. M.
,
Sayed
,
E. T.
,
Rezk
,
H.
,
Radi
,
M. A.
,
Obaideen
,
K.
, and
Abdelkareem
,
M. A.
,
2023
, “
Application of Artificial Intelligence for Prediction, Optimization, and Control of Thermal Energy Storage Systems
,”
Ther. Sci. Eng. Prog.
,
39
, p.
101730
.
112.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
,
Perth, Australia
,
Nov. 27–Dec. 1
, IEEE, Vol. 4, pp.
1942
1948
.
113.
Jaberipour
,
M.
,
Khorram
,
E.
, and
Karimi
,
B.
,
2011
, “
Particle Swarm Algorithm for Solving Systems of Nonlinear Equations
,”
Comput. Math. Appl.
,
62
(
2
), pp.
566
576
.
114.
Amer
,
M.
,
Namaane
,
A.
, and
M'sirdi
,
N.
,
2013
, “
Optimization of Hybrid Renewable Energy Systems (HRES) Using PSO for Cost Reduction
,”
Energy Procedia
,
42
, pp.
318
327
.
115.
Xing
,
Z.
,
Zhu
,
J.
,
Zhang
,
Z.
,
Qin
,
Y.
, and
Jia
,
L.
,
2022
, “
Energy Consumption Optimization of Tramway Operation Based on Improved PSO Algorithm
,”
Energy
,
258
, p.
124848
.
116.
Sharafi
,
M.
, and
ELMekkawy
,
T. Y.
,
2014
, “
Multi-Objective Optimal Design of Hybrid Renewable Energy Systems Using PSO-Simulation Based Approach
,”
Renewable energy
,
68
, pp.
67
79
.
117.
Vapnik
,
V.
,
1999
,
The Nature of Statistical Learning Theory
,
Springer Science & Business Media
.
118.
Shao
,
M.
,
Wang
,
X.
,
Bu
,
Z.
,
Chen
,
X.
, and
Wang
,
Y.
,
2020
, “
Prediction of Energy Consumption in Hotel Buildings via Support Vector Machines
,”
Sustain. Cities Soc.
,
57
, p.
102128
.
119.
Kuo
,
B.-C.
,
Ho
,
H.-H.
,
Li
,
C.-H.
,
Hung
,
C.-C.
, and
Taur
,
J.-S.
,
2013
, “
A Kernel-Based Feature Selection Method for SVM With RBF Kernel for Hyperspectral Image Classification
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
7
(
1
), pp.
317
326
.
120.
Sivanandam
,
S.
,
Deepa
,
S.
,
Sivanandam
,
S.
, and
Deepa
,
S.
,
2008
,
Genetic Algorithms
,
Springer
,
New York
.
121.
Boukraa
,
M.
, and
Chekifi
,
T.
,
2022
, “
Transient Numerical Simulation the Friction Stir Welding Process of AA 2017 Alloys, Contact Parameter Effects on Thermal History and Material Flow
,”
Key Eng. Mater.
,
929
, pp.
3
9
.
122.
Akbari-Dibavar
,
A.
,
Farahmand-Zahed
,
A.
,
Mohammadi-Ivatloo
,
B.
, and
Zare
,
K.
,
2022
, “
Energy-Efficient Dispatch of Multiple-Chiller Systems Using Hybrid Exchange Market and Genetic Algorithm
,”
Energy Build.
,
255
, p.
111571
.
123.
Elsayed
,
S. M.
,
Sarker
,
R. A.
, and
Essam
,
D. L.
,
2010
, “
A Comparative Study of Different Variants of Genetic Algorithms for Constrained Optimization
,”
Simulated Evolution and Learning: 8th International Conference, SEAL 2010: Proceedings 8
,
Kanpur, India
,
Dec. 1–4
,
Springer
, pp.
177
186
.
124.
Goldberg
,
D. E.
,
2006
,
Genetic Algorithms. Pearson Education India
,
Pearson Education India
.
125.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
.
126.
Żymełka
,
P.
, and
Szega
,
M.
,
2021
, “
Short-Term Scheduling of Gas-Fired CHP Plant With Thermal Storage Using Optimization Algorithm and Forecasting Models
,”
Energy Convers. Manage.
,
231
, pp.
113860
.
127.
Ajbar
,
W.
,
Parrales
,
A.
,
Cruz-Jacobo
,
U.
,
Conde-Gutiérrez
,
R. A.
,
Bassam
,
A.
,
Jaramillo
,
O. A.
, and
Hernández
,
J. A.
,
2021
, “
The Multivariable Inverse Artificial Neural Network Combined With GA and PSO to Improve the Performance of Solar Parabolic Trough Collector
,”
Appl. Therm. Eng.
,
189
, pp.
116651
.
128.
Chuttar
,
A.
,
Thyagarajan
,
A.
, and
Banerjee
,
D.
,
2022
, “
Leveraging Machine Learning (Artificial Neural Networks) for Enhancing Performance and Reliability of Thermal Energy Storage Platforms Utilizing Phase Change Materials
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022001
.
129.
Xiao
,
T.
,
Liu
,
Z.
,
Lu
,
L.
,
Han
,
H.
,
Huang
,
X.
,
Song
,
X.
,
Yang
,
X.
, and
Meng
,
X.
,
2023
, “
LSTM-BP Neural Network Analysis on Solid-Liquid Phase Change in a Multi-Channel Thermal Storage Tank
,”
Eng. Anal. Boundary Elem.
,
146
, pp.
226
240
.
130.
Eldokaishi
,
A. O.
,
Abdelsalam
,
M. Y.
,
Kamal
,
M. M.
, and
Abotaleb
,
H. A.
,
2022
, “
Modeling of Water-PCM Solar Thermal Storage System for Domestic Hot Water Application Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
204
, pp.
118009
.
131.
Cui
,
W.
,
Si
,
T.
,
Li
,
X.
,
Li
,
X.
,
Lu
,
L.
,
Ma
,
T.
, and
Wang
,
Q.
,
2022
, “
Heat Transfer Analysis of Phase Change Material Composited With Metal Foam-fin Hybrid Structure in Inclination Container by Numerical Simulation and Artificial Neural Network
,”
Energy Rep.
,
8
, pp.
10203
10218
.
132.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2020
, “
Impacts of Magnetic Field and Hybrid Nanoparticles in the Heat Transfer Fluid on the Thermal Performance of Phase Change Material Installed Energy Storage System and Predictive Modeling With Artificial Neural Networks
,”
J. Energy Storage
,
32
, pp.
101793
.
133.
Al-Waeli
,
A. H.
,
Kazem
,
H. A.
,
Yousif
,
J. H.
,
Chaichan
,
M. T.
, and
Sopian
,
K.
,
2020
, “
Mathematical and Neural Network Modeling for Predicting and Analyzing of Nanofluid-Nano PCM Photovoltaic Thermal Systems Performance
,”
Renewable Energy
,
145
, pp.
963
980
.
134.
Bechtel
,
S.
,
Rafii-Tabrizi
,
S.
,
Scholzen
,
F.
,
Hadji-Minaglou
,
J.-R.
, and
Maas
,
S.
,
2020
, “
Influence of Thermal Energy Storage and Heat Pump Parametrization for Demand-Side-Management in a Nearly-Zero-Energy-Building Using Model Predictive Control
,”
Energy Build.
,
226
, pp.
110364
.
135.
Motahar
,
S.
, and
Bagheri-Esfeh
,
H.
,
2020
, “
Artificial Neural Network Based Assessment of Grid-Connected Photovoltaic Thermal Systems in Heating Dominated Regions of Iran
,”
Sustain. Energy Technol. Assess.
,
39
, pp.
100694
.
136.
Scapino
,
L.
,
Zondag
,
H. A.
,
Diriken
,
J.
,
Rindt
,
C. C.
,
Van Bael
,
J.
, and
Sciacovelli
,
A.
,
2019
, “
Modeling the Performance of a Sorption Thermal Energy Storage Reactor Using Artificial Neural Networks
,”
Appl. Energy
,
253
, pp.
113525
.
137.
Zhang
,
Q.
,
Yang
,
Z.
,
Li
,
N.
,
Feng
,
R.
, and
Shi
,
P.
,
2019
, “
A Novel Solar Photovoltaic/Thermal Assisted Gas Engine Driven Energy Storage Heat Pump System (SESGEHPs) and Its Performance Analysis
,”
Energy Convers. Manage.
,
184
, pp.
301
314
.
138.
Rahman
,
A.
, and
Smith
,
A. D.
,
2018
, “
Predicting Heating Demand and Sizing a Stratified Thermal Storage Tank Using Deep Learning Algorithms
,”
Appl. Energy
,
228
, pp.
108
121
.
139.
Li
,
J.
,
Zhao
,
Q.
,
Wang
,
H.
,
Wang
,
W.
,
Yang
,
Y.
, and
Yan
,
C.
,
2018
, “
Analysis of Deep Learning Control Strategy About Peak Load Regulation and Frequency Regulation With Distribution Thermal Storage Electric Boiler
,”
Proceedings of the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)
,
Nanjing, China
,
Nov. 23–25
, IEEE, pp.
461
464
.
140.
Fadaei
,
N.
,
Yan
,
W.-M.
,
Tafarroj
,
M. M.
, and
Kasaeian
,
A.
,
2018
, “
The Application of Artificial Neural Networks to Predict the Performance of Solar Chimney Filled With Phase Change Materials
,”
Energy Convers. Manage.
,
171
, pp.
1255
1262
.
141.
Dong
,
W.
,
Kun
,
L.
, and
Yi
,
W.
,
2017
, “
Model Predictive Control of a Large Temperature Difference Refrigerating Station With Ice Cold Thermal Energy Storage
,,”
Proceedings of the 2017 Chinese Automation Congress (CAC)
,
Jinan China
,
Oct. 20–22
, IEEE, pp.
7340
7345
.
142.
Lee
,
Y. M.
,
Horesh
,
R.
, and
Liberti
,
L.
,
2015
, “
Optimal HVAC Control as Demand Response With On-Site Energy Storage and Generation System
,”
Energy Procedia
,
78
, pp.
2106
2111
.
143.
Amarasinghe
,
K.
,
Wijayasekara
,
D.
,
Carey
,
H.
,
Manic
,
M.
,
He
,
D.
, and
Chen
,
W.-P.
,
2015
, “
Artificial Neural Networks Based Thermal Energy Storage Control for Buildings
,”
Proceedings of the IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society
,
Yokohama, Japan
,
Nov. 9–12
, IEEE, pp.
005421
005426
.
144.
El-Sawi
,
A.
,
Haghighat
,
F.
, and
Akbari
,
H.
,
2014
, “
Assessing Long-Term Performance of Centralized Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
313
321
.
145.
Yaïci
,
W.
, and
Entchev
,
E.
,
2014
, “
Performance Prediction of a Solar Thermal Energy System Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1348
1359
.
146.
Rosiek
,
S.
, and
Batlles
,
F.
,
2011
, “
Performance Study of Solar-Assisted Air-Conditioning System Provided with Storage Tanks Using Artificial Neural Networks
,”
Int. J. Refrig.
,
34
(
6
), pp.
1446
1454
.
147.
Géczy-Víg
,
P.
, and
Farkas
,
I.
,
2010
, “
Neural Network Modelling of Thermal Stratification in a Solar DHW Storage
,”
Sol. Energy
,
84
(
5
), pp.
801
806
.
148.
Abd Majid
,
M. A.
,
Soomro
,
A. A.
, and
Akmar
,
A.
,
2006
, “Artificial Neural Network Modelling Approach for Assessment of Stratified Thermal Energy Storage Tank.”
149.
Khosravi
,
A.
,
Malekan
,
M.
,
Pabon
,
J. J. G.
,
Zhao
,
X.
, and
Assad
,
M. E. H.
,
2020
, “
Design Parameter Modelling of Solar Power Tower System Using Adaptive Neuro-Fuzzy Inference System Optimized With a Combination of Genetic Algorithm and Teaching Learning-Based Optimization Algorithm
,”
J. Cleaner Prod.
,
244
, pp.
118904
.
150.
Varol
,
Y.
,
Koca
,
A.
,
Oztop
,
H. F.
, and
Avci
,
E.
,
2010
, “
Forecasting of Thermal Energy Storage Performance of Phase Change Material in a Solar Collector Using Soft Computing Techniques
,”
Expert Syst. Appl.
,
37
(
4
), pp.
2724
2732
.
151.
Cox
,
S. J.
,
Kim
,
D.
,
Cho
,
H.
, and
Mago
,
P.
,
2019
, “
Real Time Optimal Control of District Cooling System With Thermal Energy Storage Using Neural Networks
,”
Appl. Energy
,
238
, pp.
466
480
.
152.
Kanesan
,
J.
,
Arunasalam
,
P.
,
Seetharamu
,
K. N.
, and
Azid
,
I. A.
,
2005
, “
Artificial Neural Network Trained, Genetic Algorithms Optimized Thermal Energy Storage Heatsinks for Electronics Cooling
,”
Int. Electron. Packag. Tech. Conf. Exhib.
,
42002
, pp.
1389
1395
.
153.
Kulkarni
,
M. V.
,
Deshmukh
,
D. S.
, and
Shekhawat
,
S. P.
,
2021
, “
An Innovative Design Approach of Hot Water Storage Tank for Solar Water Heating System Using Artificial Neural Network
,”
Mater. Today: Proc.
,
46
, pp.
5400
5405
.
154.
Al-Waeli
,
A. H.
,
Sopian
,
K.
,
Yousif
,
J. H.
,
Kazem
,
H. A.
,
Boland
,
J.
, and
Chaichan
,
M. T.
,
2019
, “
Artificial Neural Network Modeling and Analysis of Photovoltaic/Thermal System Based on the Experimental Study
,”
Energy Convers. Manage.
,
186
, pp.
368
379
.
155.
Zhou
,
S.
,
Chu
,
X.
,
Cao
,
S.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2020
, “
Prediction of the Ground Temperature With ANN, LS-SVM and Fuzzy LS-SVM for GSHP Application
,”
Geothermics
,
84
, pp.
101757
.
156.
Jamali
,
B.
,
Rasekh
,
M.
,
Jamadi
,
F.
,
Gandomkar
,
R.
, and
Makiabadi
,
F.
,
2019
, “
Using PSO-GA Algorithm for Training Artificial Neural Network to Forecast Solar Space Heating System Parameters
,”
Appl. Therm. Eng.
,
147
, pp.
647
660
.
157.
Praditia
,
T.
,
Walser
,
T.
,
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2020
, “
Improving Thermochemical Energy Storage Dynamics Forecast With Physics-Inspired Neural Network Architecture
,”
Energies
,
13
(
15
), pp.
3873
.
158.
Madani
,
T.
,
Boukraa
,
M.
,
Aissani
,
M.
,
Chekifi
,
T.
,
Ziadi
,
A.
, and
Zirari
,
M.
,
2023
, “
Experimental Investigation and Numerical Analysis Using Taguchi and ANOVA Methods for Underwater Friction Stir Welding of Aluminium Alloy 2017 Process Improvement
,”
Int. J. Press. Vessels Pip.
,
201
, pp.
104879
.
159.
Boukraa
,
M.
,
Chekifi
,
T.
, and
Lebaal
,
N.
,
2022
, “
Friction Stir Welding of Aluminum Using a Multi-Objective Optimization Approach Based on Both Taguchi Method and Grey Relational Analysis
,”
Exp. Tech.
,
47
, pp.
1
15
.
160.
Boukraa
,
M.
,
Chekifi
,
T.
,
Lebaal
,
N.
, and
Aissani
,
M.
,
2021
, “
Robust Optimization of Both Dissolution Time and Heat Affected Zone Over the Friction Stir Welding Process Using SQP Technique
,”
Exp. Tech.
,
46
, pp.
1
13
.
161.
Tawfiq
,
C.
,
Brahim
,
D.
, and
Khelfaoui
,
R.
,
2015
, “
Numerical Study of Microdrops Sorting by Microfluidic Device
,”
Proceedings of the Control, Engineering & Information Technology (CEIT), 2015 3rd International Conference on
,
Tlemcen Algeria
,
May 25–27
, IEEE, pp.
1
5
.
162.
Chekifi
,
T.
,
Dennai
,
B.
, and
Khelfaoui
,
R.
,
2015
, “
Numerical Simulation of Droplet Breakup, Splitting and Sorting in a Microfluidic Device
,”
FDMP-Fluid Dyn. Mater. Process.
,
11
(
3
), pp.
205
220
.
163.
Bagheri-Esfeh
,
H.
,
Safikhani
,
H.
, and
Motahar
,
S.
,
2020
, “
Multi-objective Optimization of Cooling and Heating Loads in Residential Buildings Integrated With Phase Change Materials Using the Artificial Neural Network and Genetic Algorithm
,”
J. Energy Storage
,
32
, pp.
101772
.
164.
Rodriguez
,
E. S. C.
,
Snasel
,
V.
,
Abraham
,
A.
,
Wozniak
,
M.
,
Grana
,
M.
, and
Cho
,
S.-B.
,
2012
,
Hybrid Artificial Intelligent Systems: 7th International Conference, HAIS 2012, Salamanca, Spain, March 28–30th, 2012, Proceedings, Part I
,
Springer
,
New York
.
165.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I. Mechanistic Model Development
,”
J. Electrochem. Soc.
,
142
(
1
), pp.
1
8
.
166.
Buffa
,
S.
,
Soppelsa
,
A.
,
Pipiciello
,
M.
,
Henze
,
G.
, and
Fedrizzi
,
R.
,
2020
, “
Fifth-Generation District Heating and Cooling Substations: Demand Response With Artificial Neural Network-Based Model Predictive Control
,”
Energies
,
13
(
17
), pp.
4339
.
167.
Venkatesh
,
B.
,
2020
, “
Automation of Thermal Energy Storage in Homes Using Artificial Neural Networks
,”
Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
,
London, ON, Canada
,
Aug. 30–Sept. 2
, IEEE, pp.
1
6
.
168.
Roccamena
,
L.
,
El Mankibi
,
M.
, and
Stathopoulos
,
N.
,
2019
, “
Development and Validation of the Numerical Model of an Innovative PCM Based Thermal Storage System
,”
J. Energy Storage
,
24
, pp.
100740
.
169.
Xia
,
H.
,
Chen
,
H.
,
Yang
,
Z.
,
Lin
,
F.
, and
Wang
,
B.
,
2015
, “
Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm
,”
Energies
,
8
(
10
), pp.
11618
11640
.
170.
Cheung
,
B. C.
,
Carriveau
,
R.
, and
Ting
,
D. S.
,
2014
, “
Multi-Objective Optimization of an Underwater Compressed Air Energy Storage System Using Genetic Algorithm
,”
Energy
,
74
, pp.
396
404
.
171.
Liu
,
F.
,
Deng
,
J.
,
Mo
,
Q.
,
Xu
,
Y.
,
Liu
,
D.
, and
Groll
,
E. A.
,
2021
, “
Structure and Control Co-Optimization for an Ejector Expansion Heat Pump Coupled With Thermal Storages
,”
Energy Build.
,
235
, pp.
110755
.
172.
Hasanien
,
H. M.
,
Shaheen
,
M. A. M.
,
Turky
,
R. A.
,
Qais
,
M. H.
,
Alghuwainem
,
S.
,
Kamel
,
S.
,
Tostado-Véliz
,
M.
, and
Jurado
,
F.
,
2022
, “
Precise Modeling of PEM Fuel Cell Using a Novel Enhanced Transient Search Optimization Algorithm
,”
Energy
,
247
, pp.
123530
.
173.
Godarzi
,
A. A.
,
Jalilian
,
M.
,
Samimi
,
J.
,
Jokar
,
A.
, and
Vesaghi
,
M. A.
,
2013
, “
Design of a PCM Storage System for a Solar Absorption Chiller Based on Exergoeconomic Analysis and Genetic Algorithm
,”
Int. J. Refrig.
,
36
(
1
), pp.
88
101
.
174.
Li
,
F.
,
Sun
,
B.
,
Zhang
,
C.
, and
Liu
,
C.
,
2019
, “
A Hybrid Optimization-Based Scheduling Strategy for Combined Cooling, Heating, and Power System With Thermal Energy Storage
,”
Energy
,
188
, pp.
115948
.
175.
Khanna
,
A.
,
Gupta
,
D.
,
Pólkowski
,
Z.
,
Bhattacharyya
,
S.
, and
Castillo
,
O.
,
2021
,
Data Analytics and Management: Proceedings of ICDAM
,
Springer
,
New York
.
176.
Zhang
,
T.
,
Liu
,
Y.
,
Rao
,
Y.
,
Li
,
X.
, and
Zhao
,
Q.
,
2020
, “
Optimal Design of Building Environment With Hybrid Genetic Algorithm, Artificial Neural Network, Multivariate Regression Analysis and Fuzzy Logic Controller
,”
Build. Environ.
,
175
, pp.
106810
.
177.
Prieto
,
C.
, and
Cabeza
,
L. F.
,
2019
, “
Thermal Energy Storage (TES) With Phase Change Materials (PCM) in Solar Power Plants (CSP). Concept and Plant Performance
,”
Appl. Energy
,
254
, pp.
113646
.
178.
Ren
,
H.
,
Ma
,
Z.
,
Lin
,
W.
,
Wang
,
S.
, and
Li
,
W.
,
2019
, “
Optimal Design and Size of a Desiccant Cooling System With Onsite Energy Generation and Thermal Storage Using a Multilayer Perceptron Neural Network and a Genetic Algorithm
,”
Energy Convers. Manage.
,
180
, pp.
598
608
.
179.
Benmoussa
,
A.
,
Rahmani
,
L.
, and
Draoui
,
B.
,
2017
, “
Simulation of Viscoplastic Flows in a Rotating Vessel Using a Regularized Model
,,”
Int. J. Multiphys.
,
11
(
4
), pp.
349
358
.
180.
Rahmani
,
L.
,
Seghier
,
O.
,
Benmoussa
,
A.
, and
Draoui
,
B.
,
2018
, “
CFD Study of the Thermal Transfer of a non-Newtonian Fluid Within a Tank Mechanically Stirred by an Anchor-Shaped Impeller
,”
EPJ Web Conf.
,
180
, p.
02089
.
181.
Benmoussa
,
A.
, and
Gamboa
,
P. V.
,
2023
, “
Effect of Control Parameters on Hybrid Electric Propulsion UAV Performance for Various Flight Conditions: Parametric Study
,”
Appl. Mech.
,
4
(
2
), pp.
493
513
.
182.
Chekifi
,
T.
, and
Boukraa
,
M.
,
2023
, “
Thermo-Hydraulic Performance Improvement of Curved Tube Receiver Operating Without and With Nanofluid
,”
J. Therm. Anal. Calorim.
,
148
.
183.
Chekifi
,
T.
,
Boukraa
,
M.
, and
Aissani
,
M.
,
2021
, “
DNS Using CLSVOF Method of Single Micro-Bubble Breakup and Dynamics in Flow Focusing
,”
J. Visualization
,
24
, pp.
519
530
.
184.
Lu
,
J.
,
Ling
,
C.
,
Shicong
,
Z.
,
Yi
,
Y.
,
Jian
,
Q.
, and
Wen
,
Z.
,
2018
, “
Regional Phase Change Storage Station Optimal Operation Considering Dynamic Temperature Estimation Based on BP Neural Network
,”
Proceedings of the 2018 37th Chinese Control Conference (CCC)
,
Wuhan, China
,
July 25–27
, IEEE, pp.
2339
2344
.
185.
Yu
,
H.
,
Yang
,
C.
, and
Zhao
,
Q.
,
2019
, “
Division of Working Variable Domain Fuzzy PID Control for Valley Electric Phase Change Heat Storage
,”
Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia)
,
Chengdu, China
,
May 21–24
, IEEE, pp.
69
73
.
186.
Li
,
W.
,
Xiu
,
D.
, and
Jia
,
W.
,
2016
, “
Automatic Control Strategies for Disturbance Rejection in a Solar Fresh air System Coupled with Latent Heat Thermal Storage Tank
,”
Proceedings of the 2016 Chinese Control and Decision Conference (CCDC)
,
Yinchuan, China
,
May 28–30
, IEEE, pp.
3136
3140
.
187.
LeBreux
,
M.
,
Lacroix
,
M.
, and
Lachiver
,
G.
,
2006
, “
Fuzzy and Feedforward Control of an Hybrid Thermal Energy Storage System
,”
Energy Build.
,
38
(
10
), pp.
1149
1155
.
188.
Zhang
,
L.
,
Kuang
,
J.
,
Sun
,
B.
,
Li
,
F.
, and
Zhang
,
C.
,
2020
, “
A Two-Stage Operation Optimization Method of Integrated Energy Systems With Demand Response and Energy Storage
,”
Energy
,
208
, pp.
118423
.
189.
Wang
,
Z.
,
Zhang
,
C.
,
Li
,
H.
, and
Zhao
,
Y.
,
2021
, “
A Multi Agent-Based Optimal Control Method for Combined Cooling and Power Systems With Thermal Energy Storage
,”
Build. Simul.
,
14
(
6
), pp.
1709
1723
.
190.
Leng
,
X.
,
Sun
,
X.
,
Xu
,
J.
, and
Huang
,
W.
,
2022
, “
Optimal Planning of a Hybrid System Integrating of Combined Cooling, Heat and Power and Energy Storage Resources
,”
Sustain. Energy Technol. Assess.
,
50
, pp.
101806
.
191.
Lee
,
D.
,
Ooka
,
R.
,
Matsuda
,
Y.
,
Ikeda
,
S.
, and
Choi
,
W.
,
2022
, “
Experimental Analysis of Artificial Intelligence-Based Model Predictive Control for Thermal Energy Storage Under Different Cooling Load Conditions
,”
Sustain. Cities Soc.
,
79
, pp.
103700
.
192.
Pan
,
G.
,
Chen
,
P.
,
Yan
,
H.
, and
Lu
,
Y.
,
2020
, “
A DFT Accurate Machine Learning Description of Molten ZnCl2 and Its Mixtures: 1. Potential Development and Properties Prediction of Molten ZnCl2
,”
Comput. Mater. Sci.
,
185
, pp.
109955
.
193.
Pan
,
G.
,
Ding
,
J.
,
Du
,
Y.
,
Lee
,
D.-J.
, and
Lu
,
Y.
,
2021
, “
A DFT Accurate Machine Learning Description of Molten ZnCl2 and Its Mixtures: 2. Potential Development and Properties Prediction of ZnCl2-NaCl-KCl Ternary Salt for CSP
,”
Comput. Mater. Sci.
,
187
, pp.
110055
.
194.
Sánchez
,
L.
,
Sánchez
,
P.
,
De Lucas
,
A.
,
Carmona
,
M.
, and
Rodríguez
,
J. F.
,
2010
, “
Using Neural Networks or Linear Models to Predict the Characteristics of Microcapsules Containing Phase Change Materials
,”
Macromol. Symp.
,
287
(
1
), pp.
162
167
.
195.
Delcroix
,
B.
,
Kummert
,
M.
, and
Daoud
,
A.
,
2018
, “
Modeling Phase-Change Materials Heat Capacity Using Artificial Neural Networks
,”
Heat Transf. Res.
,
49
(
7
), pp.
617
631
.
196.
Wang
,
Y.
,
Ling
,
C.
,
Yin
,
H.
,
Liu
,
W.
,
Tang
,
Z.
, and
Li
,
Z.
,
2020
, “
Thermophysical Properties of KCl-NaF Reciprocal Eutectic by Artificial Neural Network Prediction and Experimental Measurements
,”
Sol. Energy
,
204
, pp.
667
672
.
197.
Hashemi Jirandeh
,
M. R.
,
Mohammadiun
,
M.
,
Mohammadiun
,
H.
,
Dubaie
,
M. H.
, and
Sadi
,
M.
,
2020
, “
Intelligent Modeling of Rheological and Thermophysical Properties of Nanoencapsulated PCM Slurry
,”
Heat Transfer
,
49
(
4
), pp.
2080
2102
.
198.
Bhattarai
,
S.
,
Karki
,
R.
, and
Piya
,
P.
,
2019
, “
Reliability and Economic Assessment of Compressed Air Energy Storage in Transmission Constrained Wind Integrated Power System
,”
J. Energy Storage
,
25
, pp.
100830
.
199.
Nazari
,
M. E.
,
Bahravar
,
S.
, and
Olamaei
,
J.
,
2020
, “
Effect of Storage Options on Price-Based Scheduling for a Hybrid Trigeneration System
,”
Int. J. Energy Res.
,
44
(
9
), pp.
7342
7356
.
You do not currently have access to this content.