Abstract

Bulk flow methods for circumferentially grooved seals use simplified physics models to predict leakage and rotordynamic coefficients efficiently, but uncertainty in empirical quantities like friction factors and loss coefficients leads to limited accuracy. To develop a more fundamental understanding of incompressible grooved seal flow, this study utilizes computational fluid dynamics (CFD) and an effective film thickness, a physical boundary between the jet and recirculating flows, to investigate Reynolds number effects on flow fields and shear stresses. Simulations are run using ansyscfx for a single groove seal model where streamlined analysis produces the effective film thickness. Flow structures, film thicknesses, shear stresses, and net flow expansion into the groove are found to be described completely by the ratio of circumferential to axial Reynolds number and the total resultant Reynolds number. Decreases in leakage with rotor speed are found to be dictated by increased land shear stresses and a decreased role of the groove in inducing pressure drop. An optimal groove aspect ratio between 0.07 and 0.19 is presented based on maximizing expanded film area while retaining a main groove recirculation region. This is the first paper to analyze circumferentially grooved seal flow from an effective film thickness standpoint. The results highlight bulk flow analysis areas where an effective film thickness approach could lead to new, physics-motivated model development and the elimination of particular empirical coefficients, thus providing a foundation on which substantial improvements in bulk flow modeling accuracy can be achieved.

References

1.
Childs
,
1993
,
Turbomachinery Rotordynamics
,
Wiley
, New York.
2.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2013
, “
On the Dynamic Properties of Pump Liquid Seals
,”
ASME J. Fluids Eng.
,
135
(
5
), p. 051104.10.1115/1.4023653
3.
Kim
,
S. H.
, and
Ha
,
T. W.
,
2016
, “
Prediction of Leakage and Rotordynamic Coefficients for the Circumferential-Groove-Pump Seal Using CFD Analysis
,”
J. Mech. Sci. Technol.
,
30
(
5
), pp.
2037
2043
.10.1007/s12206-016-0410-4
4.
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2018
, “
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031002
.10.1115/1.4038437
5.
Wu
,
D.
,
Jiang
,
X.
,
Li
,
S.
, and
Wang
,
L.
,
2016
, “
A New Transient CFD Method for Determining the Dynamic Coefficients of Liquid Annular Seals
,”
J. Mech. Sci. Technol.
,
30
(
8
), pp.
3477
3486
.10.1007/s12206-016-0707-3
6.
Li
,
Z.
,
Fang
,
Z.
, and
Li
,
J.
,
2020
, “
A Comparison of Static and Rotordynamic Characteristics for Two Types of Liquid Annular Seals With Parallelly Grooved Stator/Rotor
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091012
.10.1115/1.4048144
7.
Gu
,
Q.
,
Yang
,
J.
,
Zhang
,
W.
, and
Zhang
,
M.
,
2021
, “
An Accelerating Sweep Frequency Excitation Method for the Rotordynamic Coefficients Identification of Annular Gas Seals Based on Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091021
.10.1115/1.4051101
8.
Kocur
,
J. A.
,
Nicholas
,
J. C.
, and
Lee
,
C. C.
,
2007
, “
Surveying Tilting Pad Journal Bearing and Gas-Labyrinth Seal Coefficients and Their Effect on Rotor Stability
,”
Proceedings of the Thirty-Sixth Turbomachinery Symposium
,
Texas A&M University, Turbomachinery Laboratories
, College Station, TX, Sept. 11–13, pp.
1
10
.https://dyrobes.com/wp-content/uploads/2015/09/Surveying-Tilting-Pad-Journal-Bearing-and-Gas-Labyrinth-Seal_Kocur-Nicholas-Lee-2007_linked.pdf
9.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.10.1115/1.3451752
10.
Nordmann
,
R.
,
Dietzen
,
F. J.
,
Janson
,
W.
,
Frei
,
A.
, and
Florjancic
,
S.
,
1986
, “
Rotordynamic Coefficients and Leakage Flow of Parallel Grooved Seals and Smooth Seals
,” NASA, Cleveland, OH, Report No. N87-22206.
11.
Iwatsubo
,
T.
, and
Sheng
,
B. C.
,
1990
, “
Evaluation of Dynamic Charactersitics of Parallel Grooved Seals by Theory and Experiment
,”
Proceedings of 3rd International Conference on Rotordynamics
, Lyon, France, Sept. 10–12, pp.
313
318
.
12.
Arghir
,
M.
, and
Frene
,
J.
,
2004
, “
A Bulk-Flow Analysis of Static and Dynamic Characteristics of Eccentric Circumferentially-Grooved Liquid Annular Seals
,”
ASME J. Tribol.
,
126
(
2
), pp.
316
325
.10.1115/1.1611499
13.
Florjancic
,
S.
,
1990
, “
Annular Seals of High Energy Centrifugal Pumps: A New Theory and Full Scale Measurement of Rotordynamic Coefficients and Hydraulic Friction Factors Coefficients and Hydraulic Friction Factors
,”
Ph.D. thesis
,
Swiss Federal Institute of Technology
, Zurich, Switzerland.10.3929/ethz-a-000609883
14.
Marquette
,
O. R.
, and
Childs
,
D. W.
,
1996
, “
An Extended Three-Control-Volume Theory for Circumferentially-Grooved Liquid Seals
,”
ASME J. Tribol.
,
118
(
2
), pp.
276
285
.10.1115/1.2831296
15.
San Andrés
,
L.
,
Wu
,
T.
,
Maeda
,
H.
, and
Tomoki
,
O.
,
2018
, “
A Computational Fluid Dynamics Modified Bulk Flow Analysis for Circumferentially Shallow Grooved Liquid Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012504
1
012504-9
.10.1115/1.4037614
16.
Wu
,
T.
, and
San Andrés
,
L.
,
2019
, “
Pump Grooved Seals: A Computational Fluid Dynamics Approach to Improve Bulk-Flow Model Predictions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p. 101005.10.1115/1.4044283
17.
Rhode
,
D. L.
,
Demko
,
J. A.
,
Traegner
,
U. K.
,
Morrison
,
G. L.
, and
Sobolik
,
S. R.
,
1986
, “
Prediction of Incompressible Flow in Labyrinth Seals
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
19
25
.10.1115/1.3242535
18.
Demko
,
J. A.
,
Morrison
,
G. L.
, and
Rhode
,
D. L.
,
1988
, “
The Prediction and Measurement of Incompressible Flow in a Labyrinth Seal
,”
AIAA
Paper No. AIAA-88-0190.10.2514/6.1988-190
19.
Morrison
,
G. L.
,
Johnson
,
M. C.
, and
Tatterson
,
G. B.
,
1991
, “
3-d Laser Anemometer Measurements in a Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
113
(
1
), pp.
119
125
.10.1115/1.2906518
20.
Marquette
,
O. R.
,
Childs
,
D. W.
, and
Phillips
,
S. G.
,
1997
, “
Theory Versus Experiment for Leakage and Rotordynamic Coefficients of Circumferentially-Grooved Liquid Annular Seals With l/d of 0.45
,” ASME Paper No. FEDSM97-3333.
21.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
22.
Morgan
,
N. R.
,
Wood
,
H. G.
, and
Untaroiu
,
A.
,
2016
, “
Design of Experiments to Investigate Geometric Effects on Fluid Leakage Rate in a Balance Drum Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072506
.10.1115/1.4032416
23.
Yamada
,
Y.
,
1962
, “
Resistance of a Flow Through an Annulus With an Inner Rotating Cylinder
,”
Bull. JSME
,
5
(
18
), pp.
302
310
.10.1299/jsme1958.5.302
You do not currently have access to this content.