Abstract

In this article, we present a design methodology for resonant structures exhibiting particular dynamic responses by combining an eigenfrequency matching approach and a harmonic analysis-informed eigenmode identification strategy. This systematic design methodology, based on topology optimization, introduces a novel computationally efficient approach for 3D dynamic problems requiring antiresonances at specific target frequencies subject to specific harmonic loads. The optimization’s objective function minimizes the error between target antiresonance frequencies and the actual structure’s antiresonance eigenfrequencies, while the harmonic analysis-informed identification strategy compares harmonic displacement responses against eigenvectors using a modal assurance criterion, therefore ensuring an accurate recognition and selection of appropriate antiresonance eigenmodes used during the optimization process. At the same time, this method effectively prevents well-known problems in topology optimization of eigenfrequencies such as localized eigenmodes in low-density regions, eigenmodes switching order, and repeated eigenfrequencies. Additionally, our proposed localized eigenmode identification approach completely removes the spurious eigenmodes from the optimization problem by analyzing the eigenvectors’ response in low-density regions compared to high-density regions. The topology optimization problem is formulated with a density-based parametrization and solved with a gradient-based sequential linear programming method, including material interpolation models and topological filters. Two case studies demonstrate that the proposed design methodology successfully generates antiresonances at the desired target frequency subject to different harmonic loads, design domain dimensions, mesh discretization, or material properties.

References

1.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
2.
Lee
,
T.
, and
Iizuka
,
H.
,
2019
, “
Bragg Scattering Based Acoustic Topological Transition Controlled by Local Resonance
,”
Phys. Rev. B.
,
99
(
6
), p.
064305
.
3.
Lemoult
,
F.
,
Kaina
,
N.
,
Fink
,
M.
, and
Lerosey
,
G.
,
2013
, “
Wave Propagation Control at the Deep Subwavelength Scale in Metamaterials
,”
Nat. Phys.
,
9
(
1
), pp.
55
60
.
4.
Zeighami
,
F.
,
Palermo
,
A.
, and
Marzani
,
A.
,
2021
, “
Rayleigh Waves in Locally Resonant Metamaterials
,”
Int. J. Mech. Sci.
,
195
(
4
), p.
106250
. 0
5.
Palermo
,
A.
, and
Marzani
,
A.
,
2018
, “
Control of Love Waves by Resonant Metasurfaces
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.
6.
Colombi
,
A.
,
Roux
,
P.
,
Guenneau
,
S.
,
Guéguen
,
P.
, and
Craster
,
R. V.
,
2016
, “
Forests as a Natural Seismic Metamaterial: Rayleigh Wave Bandgaps Induced by Local Resonances
,”
Sci. Rep.
,
6
(
January
), pp.
1
7
.
7.
Colombi
,
A.
,
Colquitt
,
D.
,
Roux
,
P.
,
Guenneau
,
S.
, and
Craster
,
R. V.
,
2016
, “
A Seismic Metamaterial: The Resonant Metawedge
,”
Sci. Rep.
,
6
(
Umr 7249
), pp.
1
6
.
8.
Colquitt
,
D.
,
Colombi
,
A.
,
Craster
,
R. V.
,
Roux
,
P.
, and
Guenneau
,
S.
,
2017
, “
Seismic Metasurfaces: Sub-Wavelength Resonators and Rayleigh Wave Interaction
,”
J. Mech. Phys. Solids
,
99
(
November 2016
), pp.
379
393
.
9.
Su
,
Y.-C.
, and
Wu
,
C.-K.
,
2022
, “
A Snowman-Like Seismic Metamaterial
,”
J. Appl. Phys.
,
132
(
10
), p.
105106
.
10.
Rupin
,
M.
,
Lemoult
,
F.
,
Lerosey
,
G.
, and
Roux
,
P.
,
2014
, “
Experimental Demonstration of Ordered and Disordered Multiresonant Metamaterials for Lamb Waves
,”
Phys. Rev. Lett.
,
112
(
23
), pp.
1
5
.
11.
Zaccherini
,
R.
,
Colombi
,
A.
,
Palermo
,
A.
,
Dertimanis
,
V. K.
,
Marzani
,
A.
,
Thomsen
,
H. R.
,
Stojadinovic
,
B.
, and
Chatzi
,
E. N.
,
2020
, “
Locally Resonant Metasurfaces for Shear Waves in Granular Media
,”
Phys. Rev. Appl.
,
13
(
3
), p.
1
.
12.
Lott
,
M.
,
Roux
,
P.
,
Garambois
,
S.
,
Guéguen
,
P.
, and
Colombi
,
A.
,
2020
, “
Evidence of Metamaterial Physics at the Geophysics Scale: The METAFORET Experiment
,”
Geophys. J. Int.
,
220
(
2
), pp.
1330
1339
.
13.
Boutin
,
C.
,
Schwan
,
L.
, and
Dietz
,
M. S.
,
2015
, “
Elastodynamic Metasurface: Depolarization of Mechanical Waves and Time Effects
,”
J. Appl. Phys.
,
117
(
6
), p.
064902
.
14.
Brûlé
,
S.
,
Javelaud
,
E. H.
,
Enoch
,
S.
, and
Guenneau
,
S.
,
2014
, “
Experiments on Seismic Metamaterials: Molding Surface Waves
,”
Phys. Rev. Lett.
,
112
(
13
), pp.
1
5
.
15.
Liu
,
Z.
,
Shan
,
S. B.
,
Dong
,
H. W.
, and
Cheng
,
L.
,
2022
, “
Topologically Customized and Surface-Mounted Meta-Devices for Lamb Wave Manipulation
,”
Smart Mater. Struct.
,
31
(
6
), p.
065001
.
16.
Jiang
,
W.
,
Zhu
,
Y.
,
Yin
,
G.
,
Lu
,
H.
,
Xie
,
L.
, and
Yin
,
M.
,
2022
, “
Dispersion Relation Prediction and Structure Inverse Design of Elastic Metamaterials via Deep Learning
,”
Mater. Today Phys.
,
22
, p.
100616
.
17.
Halkjær
,
S.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2006
, “
Maximizing Band Gaps in Plate Structures
,”
Struct. Multidiscip. Optim.
,
32
(
4
), pp.
263
275
.
18.
Oh
,
J. H.
,
Ahn
,
Y. K.
, and
Kim
,
Y. Y.
,
2015
, “
Maximization of Operating Frequency Ranges of Hyperbolic Elastic Metamaterials by Topology Optimization
,”
Struct. Multidiscip. Optim.
,
52
(
6
), pp.
1023
1040
.
19.
Zhang
,
J.
,
Li
,
Y.
,
Zhao
,
T.
,
Zhang
,
Q.
,
Zuo
,
L.
, and
Zhang
,
K.
,
2021
, “
Machine-Learning Based Design of Digital Materials for Elastic Wave Control
,”
Extrem. Mech. Lett.
,
48
, p.
101372
.
20.
Sigmund
,
O.
, and
Søndergaard Jensen
,
J.
,
2003
, “
Systematic Design of Phononic Band-Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci.
,
361
(
1806
), pp.
1001
1019
.
21.
Wang
,
Z.
,
Xian
,
W.
,
Baccouche
,
M. R.
,
Lanzerath
,
H.
,
Li
,
Y.
, and
Xu
,
H.
,
2022
, “
Design of Phononic Bandgap Metamaterials Based on Gaussian Mixture Beta Variational Autoencoder and Iterative Model Updating
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041705
.
22.
Dong
,
H. W.
,
Zhao
,
S. D.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2017
, “
Topology Optimization of Anisotropic Broadband Double-Negative Elastic Metamaterials
,”
J. Mech. Phys. Solids
,
105
, pp.
54
80
.
23.
Yang
,
X.
, and
Kim
,
Y. Y.
,
2018
, “
Topology Optimization for the Design of Perfect Mode-Converting Anisotropic Elastic Metamaterials
,”
Compos. Struct.
,
201
(
April
), pp.
161
177
.
24.
Ahn
,
B.
,
Lee
,
H.
,
Lee
,
J. S.
, and
Kim
,
Y. Y.
,
2019
, “
Topology Optimization of Metasurfaces for Anomalous Reflection of Longitudinal Elastic Waves
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112582
.
25.
Wu
,
R. T.
,
Liu
,
T. W.
,
Jahanshahi
,
M. R.
, and
Semperlotti
,
F.
,
2021
, “
Design of oOne-Dimensional Acoustic Metamaterials Using Machine Learning and Cell Concatenation
,”
Struct. Multidiscip. Optim.
,
63
(
5
), pp.
2399
2423
.
26.
Lissenden
,
C. J.
,
Hakoda
,
C. N.
, and
Shokouhi
,
P.
,
2021
, “
Control of Low-Frequency Lamb Wave Propagation in Plates by Boundary Condition Manipulation
,”
J. Appl. Phys.
,
129
(
9
), p.
094903
.
27.
Pillarisetti
,
L. S. S.
,
Lissenden
,
C. J.
, and
Shokouhi
,
P.
,
2022
, “
Understanding the Role of Resonances and Anti-Resonances in Shaping Surface-Wave Bandgaps for Metasurfaces
,”
J. Appl. Phys.
,
132
(
16
), p.
164901
.
28.
Guzman
,
D. G.
,
Pillarisetti
,
L. S. S.
,
Sridhar
,
S.
,
Lissenden
,
C. J.
,
Frecker
,
M.
, and
Shokouhi
,
P.
,
2022
, “
Design of Resonant Elastodynamic Metasurfaces to Control S0 Lamb Waves Using Topology Optimization
,”
JASA Express Lett.
,
2
(
11
), p.
115601
.
29.
Bendsøe
,
M. P.
,
Díaz
,
A.
, and
Kikuchi
,
N.
,
1993
, “
Topology and Generalized Layout Optimization of Elastic Structures
,”
Topol. Des. Struct.
,
227
, pp.
159
205
.
30.
Sigmund
,
Ole
, and
Bendsøe
,
Martin P.
,
2004
, “Topology Optimization: From Airplanes to Nanooptics,”
BRIDGING from Technology to Society
,
K.
Stubkjær
, and
T.
Kortenbach
, eds.,
Technical University of Denmark
,
Kgs. Lyngby
, pp.
40
51
.
31.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
32.
Van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
33.
Zargham
,
S.
,
Ward
,
T. A.
,
Ramli
,
R.
, and
Anjum Badruddin
,
I.
,
2016
, “
Topology Optimization: a Review for Structural Designs Under Vibration Problems
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1157
1177
.
34.
Zhang
,
X.
,
Kang
,
Z.
, and
Zhang
,
W.
,
2016
, “
Robust Topology Optimization for Dynamic Compliance Minimization Under Uncertain Harmonic Excitations With Inhomogeneous Eigenvalue Analysis
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1469
1484
.
35.
Silva
,
O. M.
,
Neves
,
M. M.
, and
Lenzi
,
A.
,
2020
, “
On the Use of Active and Reactive Input Power in Topology Optimization of One-Material Structures Considering Steady-State Forced Vibration Problems
,”
J. Sound Vib.
,
464
, p.
114989
.
36.
Silva
,
O. M.
,
Neves
,
M. M.
, and
Lenzi
,
A.
,
2019
, “
A Critical Analysis of Using the Dynamic Compliance as Objective Function in Topology Optimization of One-Material Structures Considering Steady-State Forced Vibration Problems
,”
J. Sound Vib.
,
444
, pp.
1
20
.
37.
Jensen
,
J. S.
,
2007
, “
Topology Optimization of Dynamics Problems With Padé Approximants
,”
Int. J. Numer. Methods Eng.
,
72
(
13
), pp.
1605
1630
.
38.
Li
,
Q.
,
Sigmund
,
O.
,
Jensen
,
J. S.
, and
Aage
,
N.
,
2021
, “
Reduced-Order Methods for Dynamic Problems in Topology Optimization: A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114149
.
39.
Olhoff
,
N.
, and
Du
,
J.
,
2016
, “
Generalized Incremental Frequency Method for Topological Design of Continuum Structures for Minimum Dynamic Compliance Subject to Forced Vibration at a Prescribed Low or High Value of the Excitation Frequency
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1113
1141
.
40.
Pedersen
,
N. L.
,
2000
, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
1
), pp.
2
11
.
41.
Jensen
,
J. S.
, and
Pedersen
,
N. L.
,
2006
, “
On Maximal Eigenfrequency Separation in Two-Material Structures: The 1D and 2D Scalar Cases
,”
J. Sound Vib.
,
289
(
4–5
), pp.
967
986
.
42.
Ma
,
Z.-D.
,
Cheng
,
H.-C.
, and
Kikuchi
,
N.
,
1994
, “
Structural Design for Obtaining Desired Eigenfrequencies by Using the Topology and Shape Optimization Method
,”
Comput. Syst. Eng.
,
5
(
1
), pp.
77
89
.
43.
Jeong
,
W. B.
,
Yoo
,
W. S.
, and
Kim
,
J. Y.
,
2003
, “
Sensitivity Analysis of Anti-Resonance Frequency for Vibration Test Control of a Fixture
,”
KSME Int. J.
,
17
(
11
), pp.
1732
1738
.
44.
Geradin
,
M.
, and
Rixen
,
D. J.
,
2018
, “
Mechanical Vibrations: Theory and Application to Structural Dynamics—3rd Edition M. Geradin and D. J. Rixen John Wiley and Sons, the Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK. 2015. 598pp. Illustrated. £83.95. ISBN 978-1-118-90020 8
,”
Aeronaut. J.
,
122
(
1251
), pp.
857
857
.
45.
Haftka
,
R. T.
, and
Gürdal
,
Z.
,
1992
,
Elements of Structural Optimization
, vol.
11
,
Springer Netherlands
,
Dordrecht
.
46.
Lamberti
,
L.
, and
Pappalettere
,
C.
,
2003
, “
Move Limits Definition in Structural Optimization With Sequential Linear Programming. Part I: Optimization Algorithm
,”
Comput. Struct.
,
81
(
4
), pp.
197
213
.
47.
Pastor
,
M.
,
Binda
,
M.
, and
Harčarik
,
T.
,
2012
, “
Modal Assurance Criterion
,”
Procedia Eng.
,
48
, pp.
543
548
.
48.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
49.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
50.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
51.
Du
,
J.
, and
Olhoff
,
N.
,
2007
, “
Topological Design of Freely Vibrating Continuum Structures for Maximum Values of Simple and Multiple Eigenfrequencies and Frequency Gaps
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
91
110
.
52.
Tcherniak
,
D.
,
2002
, “
Topology Optimization of Resonating Structures Using SIMP Method
,”
Int. J. Numer. Methods Eng.
,
54
(
11
), pp.
1605
1622
.
53.
Bruyneel
,
M.
, and
Duysinx
,
P.
,
2005
, “
Note on Topology Optimization of Continuum Structures Including Self-Weight
,”
Struct. Multidiscip. Optim.
,
29
(
4
), pp.
245
256
.
54.
Qiao
,
Z.
,
Weihong
,
Z.
,
Jihong
,
Z.
, and
Tong
,
G.
,
2012
, “
Layout Optimization of Multi-Component Structures Under Static Loads and Random Excitations
,”
Eng. Struct.
,
43
, pp.
120
128
.
55.
Li
,
Z.
,
Shi
,
T.
, and
Xia
,
Q.
,
2017
, “
Eliminate Localized Eigenmodes in Level Set Based Topology Optimization for the Maximization of the First Eigenfrequency of Vibration
,”
Adv. Eng. Softw.
,
107
, pp.
59
70
.
56.
Kim
,
T. S.
, and
Kim
,
Y. Y.
,
2000
, “
MAC-Based Mode-Tracking in Structural Topology Optimization
,”
Comput. Struct.
,
74
(
3
), pp.
375
383
.
57.
Neves
,
M. M.
,
Rodrigues
,
H.
, and
Guedes
,
J. M.
,
1995
, “
Generalized Topology Design of Structures With a Buckling Load Criterion
,”
Struct. Optim.
,
10
(
2
), pp.
71
78
.
58.
Rong
,
J. H.
,
Tang
,
Z. L.
,
Xie
,
Y. M.
, and
Li
,
F. Y.
,
2013
, “
Topological Optimization Design of Structures Under Random Excitations Using SQP Method
,”
Eng. Struct.
,
56
, pp.
2098
2106
.
59.
Zhang
,
X.
, and
Kang
,
Z.
,
2016
, “
Vibration Suppression Using Integrated Topology Optimization of Host Structures and Damping Layers
,”
JVC/Journal Vib. Control
,
22
(
1
), pp.
60
76
.
60.
Xu
,
S.
,
Cai
,
Y.
, and
Cheng
,
G.
,
2010
, “
Volume Preserving Nonlinear Density Filter Based on Heaviside Functions
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
495
505
.
61.
Papazafeiropoulos
,
G.
,
Muñiz-Calvente
,
M.
, and
Martínez-Pañeda
,
E.
,
2017
, “
Abaqus2Matlab: A Suitable Tool for Finite Element Post-Processing
,”
Adv. Eng. Softw.
,
105
, pp.
9
16
.
62.
Maeda
,
Y.
,
Nishiwaki
,
S.
,
Izui
,
K.
,
Yoshimura
,
M.
,
Matsui
,
K.
, and
Terada
,
K.
,
2006
, “
Structural Topology Optimization of Vibrating Structures With Specified Eigenfrequencies and Eigenmode Shapes
,”
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
597
628
.
63.
The MathWorks Inc.
,
2022
,
Signal Processing Toolbox (R2022b)
, https://www.mathworks.com/help/signal/ref/findpeaks.html
The MathWorks Inc.
,
Accessed June 14, 2023
.
You do not currently have access to this content.