Abstract

Mild traumatic brain injury (TBI) is a common injury to service members in recent conflicts. We attempt to correlate simulation results with clinical data from advanced imaging techniques to identify TBI-related subtle alterations in brain morphology, function, and metabolism. Magnetic resonance image (MRI) data were obtained for a young adult male, after a concussive head injury caused by a road traffic accident. A similar fall of a pedestrian using an articulated human body biodynamics model was integrated with the finite element (FE) analysis using a high-resolution human head model to investigate TBI from an accident. The hyper-viscoelastic model was used to represent the strain rate dependence in brain tissues. The bone structure was simulated using an elastoplastic model to capture the focal permanent deformation. Enhanced tetrahedral elements were used in modeling nearly incompressible tissues. The localized large deformation in the head was simulated and compared with those from the MRI images. Biomechanical measures, such as stresses and strains, were correlated with postaccident medical images with respect to injury location and severity in the brain. The correspondence between model results and MRI findings shows a new way to relate computational simulation response of human head to blunt impacts with clinical data from such incidents and thus enhances our understanding of the mechanism, extent, and effects of TBI.

References

References
1.
WISQARS,
2016
, “
Centers for Disease Control and Prevention, National Center for Injury Prevention and Control
,” Web–Based Injury Statistics Query and Reporting System (WISQARS), accessed Aug. 5, 2016, https://www.cdc.gov/traumaticbraininjury/index.html
2.
Jager
,
T. E.
,
Weiss
,
H. B.
,
Coben
,
J. H.
, and
Pepe
,
P. E.
,
2000
, “
Traumatic Brain Injuries Evaluated in U.S. Emergency Departments, 1992–1994
,”
Acad. Emerg. Med.
,
7
(
2
), pp.
134
–1
40
.10.1111/j.1553-2712.2000.tb00515.x
3.
Florence
,
C. S.
,
Bergen
,
G.
,
Atherly
,
A.
,
Burns
,
E. R.
,
Stevens
,
J. A.
, and
Drake
,
C.
,
2018
, “
Medical Costs of Fatal and Nonfatal Falls in Older Adults
,”
J. Am. Geriatr. Soc.
,
66
(
4
), p.
693
.10.1111/jgs.15304
4.
Horgan
,
T. J.
, and
Gilchrist
,
M. D.
,
2008
, “
The Creation of Three-Dimensional Finite Element Models for Simulating Head Impact Biomechanics
,”
Int. J. Crashworthiness
,
8
(
4
), pp.
353
366
.10.1533/ijcr.2003.0243
5.
Ji
,
S.
,
Ghadyani
,
H.
,
Bolander
,
R. P.
,
Beckwith
,
J. G.
,
Ford
,
J. C.
,
McAllister
,
T. W.
,
Flashman
,
L. A.
,
Paulsen
,
K. D.
,
Ernstrom
,
K.
,
Jain
,
S.
,
Raman
,
R.
,
Zhang
,
L.
, and
Greenwald
,
R. M.
,
2014
, “
Parametric Comparisons of Intracranial Mechanical Responses From Three Validated Finite Element Models of the Human Head
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
11
24
.10.1007/s10439-013-0907-2
6.
Kleiven
,
S.
, and
Hardy
,
W. N.
,
2002
, “
Correlation of an FE Model of the Human Head With Local Brain Motion–Consequences for Injury Prediction
,”
Stapp Car Crash J.
,
46
, pp.
123
44
.10.4271/2002-22-0007
7.
Kleiven
,
S.
,
2013
, “
Why Most Traumatic Brain Injuries Are Not Caused by Linear Acceleration but Skull Fractures Are
,”
Front. Bioeng. Biotechnol. Biomech.
,
1
, pp.
1
5
.10.3389/fbioe.2013.00015
8.
Meyer
,
F.
,
Bourdet
,
N.
,
Gunzel
,
K.
, and
Willinger
,
R.
,
2013
, “
Development and Validation of a Coupled Head-Neck FEM–Application to Whiplash Injury Criteria Investigation
,”
Int. J. Crashworthiness
,
18
(
1
), pp.
40
63
.10.1080/13588265.2012.732293
9.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
,
2008
, “
Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
Stapp Car Crash J.
,
52
, pp.
1
31
.10.4271/2008-22-0001
10.
Schwarz
,
D.
,
Guleyupoglu
,
B.
,
Koya
,
B.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Development of a Computationally Efficient Full Human Body Finite Element Model
,”
Traffic Injury Prev.
,
16
, pp.
S49
S56
.10.1080/15389588.2015.1021418
11.
Tan
,
X. G.
,
Przekwas
,
A. J.
, and
Gupta
,
R. K.
,
2017
, “
Computational Modeling of Blast Wave Interaction With a Human Body and Assessment of Traumatic Brain Injury
,”
Shock Waves
,
27
(
6
), pp.
889
904
.10.1007/s00193-017-0740-x
12.
Cotton
,
R. T.
,
Pearce
,
C. W.
,
Young
,
P. G.
,
Kota
,
N.
,
Leung
,
A. C.
,
Bagchi
,
A.
, and
Qidwai
,
S. M.
,
2016
, “
Development of a Geometrically Accurate and Adaptable Finite Element Head Model for Impact Simulation: The Naval Research Laboratory-Simpleware Head Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
1
), pp.
101
113
.10.1080/10255842.2014.994118
13.
Tan
,
X. G.
, and
Przekwas
,
A. J.
,
2011
, “
A Computational Model for Articulated Human Body Dynamics
,”
Int. J. Human Factors Modell. Simul.
,
2
(
1/2
), pp.
85
110
.10.1504/IJHFMS.2011.041639
14.
Danielson
,
K. T.
,
2014
, “
Fifteen Node Tetrahedral Elements for Explicit Methods in Nonlinear Solid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
160
180
.10.1016/j.cma.2014.01.012
15.
Abaqus 6.12
,
2012
, “Theory, Benchmarks, and Examples Manuals,”
Dassault Systems Simulia Corp
,
Providence, RI
.
16.
Saunders
,
R.
,
Kota
,
N.
,
Bagchi
,
A.
, and
Qidwai
,
S.
,
2018
, “
On Challenges in Developing a High-Fidelity Model of the Human Head for Traumatic Brain Injury Prediction
,” Naval Research Laboratory, Defense Technical Information Center, Washington, DC, Report No.
NRL/MR/6350–18-9807
.https://www.dtic.mil/dtic/tr/fulltext/u2/1063014.pdf
17.
Kazam
,
J. J.
, and
Tsiouris
,
A. J.
,
2015
, “
Brain Magnetic Resonance Imaging for Traumatic Brain Injury: Why, When, and How?
,”
Top Magn. Reson. Imaging
,
24
(
5
), pp.
225
239
.10.1097/RMR.0000000000000061
18.
Wu
,
X.
,
Kirov
,
I. I.
,
Gonen
,
O.
,
Ge
,
Y.
,
Grossman
,
R. I.
, and
Lui
,
Y. W.
,
2016
, “
MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update
,”
Radiology
,
279
(
3
), pp.
693
707
.10.1148/radiol.16142535
19.
Yuh
,
E. L.
,
Mukherjee
,
P.
,
Lingsma
,
H. F.
,
Yue
,
J. K.
,
Ferguson
,
A. R.
,
Gordon
,
W. A.
,
Valadka
,
A. B.
,
Schnyer
,
D. M.
,
Okonkwo
,
D. O.
,
Maas
,
A. I.
, and
Manley
,
G. T.
,
2013
, “
TRACK-TBI Investigators. Magnetic Resonance Imaging Improves 3-Month Outcome Prediction in Mild Traumatic Brain Injury
,”
Ann. Neurol.
,
73
(
2
), pp.
224
235
.10.1002/ana.23783
20.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer-Verlag
,
New York
.
21.
Bonet
,
J.
,
Marriott
,
H.
, and
Hassan
,
O.
,
2001
, “
Stability and Comparison of Different Linear Tetrahedral Formulation for Nearly Incompressible Explicit Dynamic Applications
,”
Int. J. Numer. Methods Eng.
,
50
(
1
), pp.
119
133
.10.1002/1097-0207(20010110)50:1<119::AID-NME24>3.0.CO;2-C
22.
Tan
,
X. G.
,
Kannan
,
R.
,
Przekwas
,
A. J.
,
Ott
,
K.
,
Harrigan
,
T.
,
Roberts
,
J.
, and
Merkle
,
A.
,
2012
, “
An Enhanced Articulated Human Body Model Under C4 Blast Loadings
,”
ASME
Paper No. IMECE 2012-89067.10.1115/2012-89067
23.
Wood
,
J.
,
1971
, “
Dynamic Response of Human Cranial Bone
,”
J. Biomech.
,
4
(
1
), pp.
1
12
.10.1016/0021-9290(71)90010-8
24.
Brewick
,
P.
,
Saunders
,
R.
, and
Bagchi
,
A.
,
2017
, “
Biomechanical Modeling of the Human Head
,” Naval Research Laboratory, Defense Technical Information Center, Washington, DC, Report No. NRL/FR/6350–17-10304.
25.
Tan
,
X. G.
, and
Bagchi
,
A.
,
2017
, “
Modeling and Reconstruction of Multi-Fidelity Traumatic Head Injury Due to Blunt Impact
,”
ASME
Paper No. IMECE 2017-70610.10.1115/2017-70610
26.
Teferra
,
K.
,
Tan
,
X. G.
,
Iliopoulos
,
A.
,
Michopoulos
,
J.
, and
Qidwai
,
S.
,
2018
, “
Effect of Human Head Morphological Variability on the Mechanical Response of Blast Overpressure Loading
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
9
), p.
e3109
.10.1002/cnm.3109
27.
Saunders
,
R. N.
,
Tan
,
X. G.
,
Qidwai
,
S. M.
, and
Bagchi
,
A.
,
2019
, “
Towards Identification of Correspondence Rules to Relate Traumatic Brain Injury in Different Species
,”
Ann. Bio. Eng.
,
47
(
9
), pp.
2005
2018
.10.1007/s10439-018-02157-1
28.
Tan
,
X. G.
, and
Matic
,
P.
,
2019
, “
Simulation of Cumulative Exposure Statistics for Blast Pressure Transmission Into the Brain
,”
Mil. Med.
(in press).
29.
Nahum
,
A. M.
,
Smith
,
R. W.
, and
Ward
,
C. C.
,
1977
, “
Intracranial Pressure Dynamics During Head Impact
,”
SAE
Paper No. 770922.10.4271/770922
30.
Saunders
,
R. N.
,
Tan
,
X. G.
, and
Bagchi
,
A.
,
2019
, “
On the Development of Interspecies Traumatic Brain Injury Correspondence Rules
,”
Mil. Med.
,
184
(
Suppl_1
), p.
181
.10.1093/milmed/usy360
31.
Rafaels
,
K. A.
,
‘Dale’ Bass
,
C. R.
,
Panzer
,
M. B.
,
Salzar
,
R. S.
,
Woods
,
W. A.
,
Feldman
,
S. H.
,
Walilko
,
T.
,
Kent
,
R. W.
,
Capehart
,
B. P.
,
Foster
,
J. B.
,
Derkunt
,
B.
, and
Toman
,
A.
,
2012
, “
Brain Injury Risk From Primary Blast
,”
J. Trauma Acute Care Surg.
,
73
(
4
), pp.
895
901
.10.1097/TA.0b013e31825a760e
32.
Dawson
,
S. L.
,
Hirsch
,
C. S.
,
Lucas
,
F. V.
, and
Sebek
,
B. A.
,
1980
, “
The Contrecoup Phenomenon, Reappraisal of a Classical Problem
,”
Hum. Pathol.
,
11
(
2
), pp.
155
166
.10.1016/S0046-8177(80)80136-5
You do not currently have access to this content.