Abstract

Metal-assisted chemical etching (MacEtch) of silicon shows reliable vertical anisotropic wet etching only in single-crystal silicon, which limits its applications to a small number of devices. This work extends the capabilities of MacEtch to polysilicon which has potential to enable high-volume and cost-sensitive applications such as optical metasurfaces, anodes for high capacity and flexible batteries, electrostatic supercapacitors, sensors, nanofluidic deterministic lateral displacement devices, etc. This work presents a MacEtch of polysilicon that produces nanostructure arrays with sub-50 nm resolution and anisotropic profile. The three demonstrated structures are pillars of 5:1 aspect ratio and 50 nm spacing for comparison to single crystal silicon MacEtch literature, pillars of 30 nm spacing, and a diamond pillar array with sharp corners to establish resolution limits of polysilicon MacEtch.

References

1.
Wang
,
Y.
,
Zhang
,
X.
,
Gao
,
P.
,
Shao
,
Z.
,
Zhang
,
X.
, and
Han
,
Y.
,
2014
, “
Air Heating Approach for Multilayer Etching and Roll-to-Roll Transfer of Silicon Nanowire Arrays as SERS Substrates for High Sensitivity Molecule Detection
,”
ACS Appl. Mater. Interfaces
,
6
(
2
), pp.
977
984
.10.1021/am4043883
2.
Gao
,
Y.
,
Asadirad
,
M.
,
Yao
,
Y.
,
Dutta
,
P.
,
Galstyan
,
E.
, and
Shervin
,
S.
,
2016
, “
High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-Like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process
,”
ACS Appl. Mater. Interfaces
,
8
(
43
), pp.
29565
29572
.10.1021/acsami.6b06770
3.
Ito
,
M.
, and
Kamath
,
A.
,
2022
, “
Large-Area, High-Temperature Stainless Steel Foil Substrate for Manufacturing Low-Cost and Flexible CMOS Polysilicon TFTs
,”
J. Soc. Inform. Display
,
30
(
4
), pp.
309
318
.10.1002/jsid.1102
4.
Trifunovic
,
M.
,
Chandra
,
A.
,
Ito
,
M.
,
Khoo
,
S.
, and
Kamath
,
A.
,
2019
, “Polysilicon CMOS TFTs on Ultrathin and Flexible Stainless Steel Substrates,”
Proceedings of the International Display Workshops
, Tokyo, Japan, Nov. 27–29, pp.
1606
1609
.10.36463/idw.2019.1606
5.
wei
,
C. S.
,
Chuang
,
V. P.
,
Boles
,
S. T.
, and
Thompson
,
C. V.
,
2010
, “
Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement
,”
Adv. Funct. Mater.
,
20
(
24
), pp.
4364
4370
.10.1002/adfm.201000437
6.
Kim
,
J. D.
,
Kim
,
M.
,
Kong
,
L.
,
Mohseni
,
P. K.
,
Ranganathan
,
S.
, and
Pachamuthu
,
J.
,
2018
, “
Self-Anchored Catalyst Interface Enables Ordered Via Array Formation From Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon
,”
ACS Appl. Mater. Interfaces
,
10
(
10
), pp.
9116
9122
.10.1021/acsami.7b17708
7.
Li
,
L.
,
Zhao
,
X.
, and
Wong
,
C. P.
,
2014
, “
Deep Etching of Single- and Polycrystalline Silicon With High Speed, High Aspect Ratio, High Uniformity, and 3D Complexity by Electric Bias-Attenuated Metal-Assisted Chemical Etching (EMaCE)
,”
ACS Appl. Mater. Interfaces
,
6
(
19
), pp. 16782−16791.10.1021/am504046b
8.
Mallavarapu
,
A.
,
Gawlik
,
B.
,
Grigas
,
M.
,
Castaneda
,
M.
,
Abed
,
O.
,
Watts
,
M. P.
, and
Sreenivasan
,
S. V.
,
2021
, “
Scalable Fabrication and Metrology of Silicon Nanowire Arrays Made by Metal Assisted Chemical Etch
,”
IEEE Trans. Nanotechnol.
,
20
, pp.
83
91
.10.1109/TNANO.2020.3047366
9.
Khusnatdinov
,
N.
,
Resnick
,
D. J.
,
Singhal
,
S.
,
Grigas
,
M. M.
, and
Sreenivasan
,
S. V.
,
2017
, “
Development of an Inkjet-Enabled Adaptive Planarization Process
,”
Proc. SPIE
, 10451, p. 104511A.10.1117/12.2280311
10.
Chen
,
J. M.
,
Chen
,
C. Y.
,
Wong
,
C. P.
, and
Chen
,
C. Y.
,
2017
, “
Inherent Formation of Porous p-Type Si Nanowires Using Palladium-Assisted Chemical Etching
,”
Appl. Surf. Sci.
,
392
, pp.
498
502
.10.1016/j.apsusc.2016.09.048
11.
Li
,
S.
,
Ma
,
W.
,
Zhou
,
Y.
,
Chen
,
X.
,
Xiao
,
Y.
, and
Ma
,
M.
,
2014
, “
Fabrication of Porous Silicon Nanowires by MACE Method in HF/H2O2/AgNO3 System at Room Temperature
,”
Nanoscale Res Lett.
, 9, p.
196
.10.1186/1556-276X-9-196
12.
Zhong
,
X.
,
Qu
,
Y.
,
Lin
,
Y. C.
,
Liao
,
L.
, and
Duan
,
X.
,
2011
, “
Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires
,”
ACS Appl. Mater. Interfaces
,
3
(
2
), pp.
261
270
.10.1021/am1009056
13.
Mallavarapu
,
A.
,
Ajay
,
P.
,
Barrera
,
C.
, and
Sreenivasan
,
S. V.
,
2021
, “
Ruthenium-Assisted Chemical Etching of Silicon: Enabling CMOS-Compatible 3D Semiconductor Device Nanofabrication
,”
ACS Appl. Mater. Interfaces
,
13
(
1
), pp.
1169
1177
.10.1021/acsami.0c17011
14.
Lajvardi
,
M.
,
Eshghi
,
H.
,
Ghazi
,
M. E.
,
Izadifard
,
M.
, and
Goodarzi
,
A.
,
2015
, “
Structural and Optical Properties of Silicon Nanowires Synthesized by Ag-Assisted Chemical Etching
,”
Mater. Sci. Semicond. Process.
,
40
, pp.
556
563
.10.1016/j.mssp.2015.07.032
15.
Romano
,
L.
,
Kagias
,
M.
,
Vila-Comamala
,
J.
,
Jefimovs
,
K.
,
Tseng
,
L.-T.
,
Guzenko
,
V. A.
, and
Stampanoni
,
M.
,
2020
, “
Metal Assisted Chemical Etching of Silicon in the Gas Phase: A Nanofabrication Platform for X-Ray Optics
,”
Nanoscale Horiz.
,
5
(
5
), pp.
869
879
.10.1039/C9NH00709A
16.
Yasseen
,
A. A.
,
Mourlas
,
N. J.
, and
Mehregany
,
M.
,
1997
, “
Chemical‐Mechanical Polishing for Polysilicon Surface Micromachining
,”
J. Electrochem. Soc.
,
144
(
1
), pp.
237
242
.10.1149/1.1837391
17.
Abadias
,
G.
,
Chason
,
E.
,
Keckes
,
J.
,
Sebastiani
,
M.
,
Thompson
,
G. B.
,
Barthel
,
E.
,
Doll
,
G. L.
,
Murray
,
C. E.
,
Stoessel
,
C. H.
, and
Martinu
,
L.
,
2018
, “
Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects
,”
J. Vac. Sci. Technol. A Vac., Surf., Films
,
36
(
2
), p.
020801
.10.1116/1.5011790
18.
Maier-Schneider
,
D.
,
Maibach
,
J.
,
Obermeier
,
E.
, and
Schneider
,
D.
,
1995
, “
Variations in Young's Modulus and Intrinsic Stress of LPCVD-Polysilicon Due to High-Temperature Annealing
,”
J. Micromech. Microeng.
,
5
(
2
), pp.
121
124
.10.1088/0960-1317/5/2/016
19.
Lim
,
H.
,
Choi
,
K. B.
,
Kim
,
G.
,
Lee
,
S.
,
Park
,
H.
, and
Ryu
,
J.
,
2014
, “
Roll-to-Roll Nanoimprint Lithography for Patterning on a Large-Area Substrate Roll
,”
Microelectronic Engineering
, 123, pp.
18
22
.10.1016/j.mee.2014.03.037
20.
Harry Levinson
,
H. J.
,
2019
, “
The Potential of EUV Lithography
,”
SPIE Proc.
, 11177, p. 1117702.10.1117/12.2528446
21.
Gianchandani
,
Y. B.
,
Shinn
,
M.
, and
Najafi
,
K.
,
1997
, “
Impact of Long, High Temperature Anneals on Residual Stress in Polysilicon
,”
International Conference on Solid-State Sensors and Actuators
, Chicago, IL, June 16–19, pp.
623
624
.https://web.eecs.umich.edu/~yogesh/pdfs/conferencepapers/Trans97_polysilicon.pdf
22.
Hoon
,
L. S.
,
Soo
,
J. J.
,
Soo
,
L. S.
,
Bo
,
L. S.
, and
Moon
,
H. N.
,
2016
, “
Low Temperature Deposition of Polycrystalline Silicon Thin Films on a Flexible Polymer Substrate by Hot Wire Chemical Vapor Deposition
,”
J. Crystal Growth
,
453
, pp.
151
157
.10.1016/j.jcrysgro.2016.08.033
23.
Gusev
,
E. Y.
,
Jityaeva
,
J. Y.
,
Geldash
,
A. A.
, and
Ageev
,
O. A.
,
2017
, “
Effects of PECVD Temperature and RF Power on Surface Structure and Refractive Index of Amorphous and Polycrystalline Silicon Films
,”
J. Phys. Conf. Ser.
,
917
, p.
032029
.10.1088/1742-6596/917/3/032029
24.
Gu
,
J. D.
, and
Chen
,
P. L.
,
2006
, “
Direct Fabrication of Large-Grain Polycrystalline Silicon Thin Films by RF-Biased RF-PECVD at Low Temperature
,”
Thin Solid Films
,
498
(
1–2
), pp.
2
8
.10.1016/j.tsf.2005.07.053
You do not currently have access to this content.