Abstract

The determination of weights in decision-making problems can be deduced as a complex process of preference formation. Preferences are expressions of behavioral attitudes and are affected by external circumstances, such as risk and ambiguity. The objective of this research is to examine the impact of both the human factor and the weighting methods on the weighting process in decision-making problems. Based on relevant literature a new methodology is proposed and applied to identify with the use of a psychometric function the behavioral attitudes of decision-making analysts against risk and ambiguity. Furthermore, the examination of process-related features such as the weighting method, the weighting scale and the weighting problem's presentation provides additional knowledge on the understanding of the weighting process in decision-making problems. Thus, an original survey is designed, aiming at: (a) the identification of the respondents' attitudinal preferences based on multiple personality tests and (b) the elicitation of weight assignments through the use of different weighting tasks and subtasks. The findings reveal that the weightings and their consistency are significantly affected by the elicitation method, the nature of the weighting scale and the problem's framing. It is also interesting that the decision analysts' behavioral traits, in association with the problem's methodological aspects, affect the weight assignments, thus providing evidence for the potential to predict weightings in the decision-making process.

References

References
1.
Korhonen
,
P. J.
,
Silvennoinen
,
K.
,
Wallenius
,
J.
, and
Öörni
,
A.
,
2012
, “
Can a Linear Value Function Explain Choices? An Experimental Study
,”
Eur. J. Oper. Res.
,
219
(
2
), pp.
360
367
.10.1016/j.ejor.2011.12.040
2.
Blagojevic
,
B.
,
Srdjevic
,
B.
,
Srdjevic
,
Z.
, and
Zoranovic
,
T.
,
2016
, “
Heuristic Aggregation of Individual Judgments in AHP Group Decision Making Using Simulated Annealing Algorithm
,”
Inf. Sci.
,
330
, pp.
260
273
.10.1016/j.ins.2015.10.033
3.
Roth
,
B.
, and
Voskort
,
A.
,
2014
, “
Stereotypes and False Consensus: How Financial Professionals Predict Risk Preferences
,”
J. Econ. Behav. Org.
,
107
, pp.
553
565
.10.1016/j.jebo.2014.05.006
4.
Shao
,
J.
,
Taisch
,
M.
, and
Ortega-Mier
,
M.
,
2016
, “
A Grey-Decision-Making Trial and Evaluation Laboratory (DEMATEL) Analysis on the Barriers Between Environmentally Friendly Products and Consumers: Practitioners' Viewpoints on the European Automobile Industry
,”
J. Cleaner Prod.
,
112
, pp.
3185
3194
.10.1016/j.jclepro.2015.10.113
5.
Retief
,
F.
,
Morrison-Saunders
,
A.
,
Geneletti
,
D.
, and
Pope
,
J.
,
2013
, “
Exploring the Psychology of Trade-Off Decision-Making in Environmental Impact Assessment
,”
Impact Assess. Proj. Appraisal
,
31
(
1
), pp.
13
23
.10.1080/14615517.2013.768007
6.
Bhatia
,
S.
, and
Mullett
,
T. L.
,
2016
, “
The Dynamics of Deferred Decision
,”
Cognit. Psychol.
,
86
, pp.
112
151
.10.1016/j.cogpsych.2016.02.002
7.
Tohmé
,
F.
,
Caterina
,
G.
, and
Gangle
,
R.
,
2017
, “
Local and Global Optima in Decision-Making: A Sheaf-Theoretical Analysis of the Difference Between Classical and Behavioral Approaches
,”
Int. J. Gen. Syst.
,
1079
, pp.
1
19
.10.1080/03081079.2017.1355913
8.
Hogarth
,
R. M.
, and
Einhorn
,
H. J.
,
1990
, “
Venture Theory: A Model of Decision Weights
,”
Manage. Sci.
,
36
(
7
), pp.
780
803
.10.1287/mnsc.36.7.780
9.
Panno
,
A.
,
Lauriola
,
M.
, and
Figner
,
B.
,
2013
, “
Emotion Regulation and Risk Taking: Predicting Risky Choice in Deliberative Decision Making
,”
Cognit. Emotion
,
27
(
2
), pp.
326
334
.10.1080/02699931.2012.707642
10.
Naili
,
M.
,
Boubetra
,
A.
,
Tari
,
A.
,
Bouguezza
,
Y.
, and
Achroufene
,
A.
,
2015
, “
Brain-Inspired Method for Solving Fuzzy Multi-Criteria Decision Making Problems (BIFMCDM)
,”
Expert Syst. Appl.
,
42
(
4
), pp.
2173
2183
.10.1016/j.eswa.2014.07.047
11.
Brand
,
M.
,
Schiebener
,
J.
,
Pertl
,
M.-T.
, and
Delazer
,
M.
,
2014
, “
Know the Risk, Take the Win: How Executive Functions and Probability Processing Influence Advantageous Decision Making Under Risk Conditions
,”
J. Clin. Exp. Neuropsychol.
,
36
(
9
), pp.
914
929
.10.1080/13803395.2014.955783
12.
Meier
,
K. M.
, and
Blair
,
M. R.
,
2013
, “
Waiting and Weighting: Information Sampling Is a Balance Between Efficiency and Error-Reduction
,”
Cognition
,
126
(
2
), pp.
319
325
.10.1016/j.cognition.2012.09.014
13.
Thomas
,
P. J.
,
2016
, “
Measuring Risk-Aversion: The Challenge
,”
Measurement
,
79
, pp.
285
301
.10.1016/j.measurement.2015.07.056
14.
Weller
,
J. A.
,
Levin
,
I. P.
, and
Bechara
,
A.
,
2010
, “
Do Individual Differences in Iowa Gambling Task Performance Predict Adaptive Decision Making for Risky Gains and Losses?
,”
J. Clin. Exp. Neuropsychol.
,
32
(
2
), pp.
141
150
.10.1080/13803390902881926
15.
Johansen
,
I. L.
, and
Rausand
,
M.
,
2015
, “
Ambiguity in Risk Assessment
,”
Saf. Sci.
,
80
, pp.
243
251
.10.1016/j.ssci.2015.07.028
16.
Blavatskyy
,
P.
,
2013
, “
Which Decision Theory?
,”
Econ. Lett.
,
120
(
1
), pp.
40
44
.10.1016/j.econlet.2013.03.039
17.
Csermely
,
T.
, and
Rabas
,
A.
,
2016
, “
How to Reveal People's Preferences: Comparing Time Consistency and Predictive Power of Multiple Price List Risk Elicitation Methods
,”
J. Risk Uncertain
,
53
(
2–3
), pp. 107–136.10.1007/s11166-016-9247-6
18.
He
,
P.
,
Veronesi
,
M.
, and
Engel
,
S.
,
2017
, “
Consistency of Risk Preference Measures: An Artefactual Field Experiment From Rural China
,”
J. Develop. Stud.
,
54
(
11
), pp.
1
19
.10.1080/00220388.2017.1336542
19.
Holt
,
C.
, and
Laury
,
S.
,
2002
, “
Risk Aversion and Incentive Effects
,”
Am. Econ. Rev.
,
92
(
5
), pp.
1644
1655
.10.1257/000282802762024700
20.
Andreoni
,
J.
, and
Harbaugh
,
W. T.
,
2010
, “
Unexpected Utility Experimental Tests of Five Key Questions About Preferences Over Risk
,” University of Oregon Economics Department Working Papers 2010–14, University of Oregon, Eugene, OR, accessed Aug. 25, 2017, https://econweb.ucsd.edu/~jandreon/WorkingPapers/AndreoniHarbaughUU.pdf
21.
Lauriola
,
M.
, and
Levin
,
I. P.
,
2001
, “
Relating Individual Differences in Attitude Toward Ambiguity to Risky Choices
,”
J. Behav. Decis. Making
,
14
(
2
), pp.
107
122
.10.1002/bdm.368
22.
Riabacke
,
M.
,
Danielson
,
M.
, and
Ekenberg
,
L.
,
2012
, “
State-of-the-Art Prescriptive Criteria Weight Elicitation
,”
Adv. Decis. Sci.
,
2012
, pp.
1
24
.10.1155/2012/276584
23.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Organ. Behav. Human Decis. Processes
,
50
(
2
), pp.
179
211
.10.1016/0749-5978(91)90020-T
24.
Chou
,
J.-S.
, and
Ongkowijoyo
,
C. S.
,
2015
, “
Reliability-Based Decision Making for Selection of Ready-Mix Concrete Supply Using Stochastic Superiority and Inferiority Ranking Method
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
29
39
.10.1016/j.ress.2014.12.004
25.
Gold
,
J. I.
, and
Ding
,
L.
,
2013
, “
How Mechanisms of Perceptual Decision-Making Affect the Psychometric Function
,”
Prog. Neurobiol.
,
103
, pp.
98
114
.10.1016/j.pneurobio.2012.05.008
26.
Treutwein, B., and Strasburger, H., 1999, “Fitting the Psychometric Function,”
Perception and Psychophysics
,
61
(1), pp. 87–106. 10.3758/BF03211951
27.
Tzioutziou
,
A.
, and
Xenidis
,
Y.
,
2018
, “
The Weighting Method's Impact on the Weighting Process in Decision Making Problems
,”
Proceedings ESREL—Safe Societies in a Changing World
,
S.
Haugen
, ed.,
Taylor & Francis Group
,
London
, pp.
373
380
.
28.
Charness
,
G.
,
Gneezy
,
U.
, and
Kuhn
,
M. A.
,
2013
, “
Experimental Methods: Extra-Laboratory Experiments-Extending the Reach of Experimental Economics
,”
J. Econ. Behav. Org.
,
91
, pp.
93
100
.10.1016/j.jebo.2013.04.002
29.
Navarro
,
D.
, and
Foxcroft
,
D.
,
2019
, “
Learning Statistics With Jamovi: A Tutorial for Psychology Students and Other Beginners
,” R Package Version 0.70, accessed Sept. 19, 2019, http://learnstatswithjamovi.com
You do not currently have access to this content.