Abstract

With the increasing penetration of wind power into modern power systems, accurate forecast models play a crucial role in large-scale wind power consumption and power system stability. To improve the accuracy and reliability of ultrashort-term wind power prediction, a novel deterministic prediction model and uncertainty quantification with interval estimation were proposed in this study. In consideration of the dynamic characteristics of a generator and conditional dependence, the generator rotor speed and pitch angle were regarded as the indicators of the dynamic characteristics of the generator, and light gradient boosting machine (LGBM) with a Bayesian optimization method was explored to build the deterministic prediction model. Considering the conditional dependence between output power and forecast error, a fuzzy C-means clustering method was used to cluster forecast errors into different clusters, and the best error probability distribution was obtained by fitting the error histogram with nonparametric kernel density estimation. Prediction intervals at different confidence levels were calculated, and the error uncertainty was quantified. A case study was conducted to compare prediction accuracy and reliability by using the present and proposed methods. Results demonstrate that the LGBM deterministic prediction model combined with Bayesian optimization has better prediction accuracy and lower computational cost than the comparative models, specifically when the input features are high-dimensional big data. The nonparametric estimation method with conditional dependence is reliable for interval prediction. The proposed method has a certain reference value for wind turbines participating in frequency regulation and power control of power grid.

References

1.
Zhang
,
J.
,
Meng
,
H.
,
Gu
,
B.
, and
Li
,
P.
,
2020
, “
Research on Short-Term Wind Power Combined Forecasting and Its Gaussian Could Uncertainty to Support the Integration of Renewables and EVs
,”
Renewable Energy
,
153
, pp.
884
899
.
2.
Gu
,
B.
,
Luo
,
K.
,
Zhang
,
H.
,
Zhang
,
J.
, and
Huang
,
H.
,
2021
, “
Short-Term Forecasting and Uncertainty Analysis of Wind Power
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
054503
.
3.
Wang
,
H.
,
Zhang
,
Y. M.
,
Mao
,
J. X.
, and
Wan
,
H.-P.
,
2020
, “
A Probabilistic Approach for Short-Term Prediction of Wind Gust Speed Using Ensemble Learning
,”
J. Wind Eng. Ind. Aerodyn.
,
202
, p.
104198
.
4.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M.
,
2021
, “
Short-Term Prediction of Global Solar Radiation Energy Using Weather Data and Machine Learning Ensembles: A Comparative Study
,”
ASME J. Sol. Energy Eng
,
143
(
5
), p.
051003
.
5.
Mana
,
M.
,
Astolfi
,
D.
,
Castellani
,
F.
, and
Meißner
,
C.
,
2020
, “
Day-Ahead Wind Power Forecast Through High-Resolution Mesoscale Model: Local Computational Fluid Dynamics Versus Artificial Neural Network Downscaling
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
034502
.
6.
Safari
,
N.
,
Chung
,
C. Y.
, and
Price
,
G. C. D.
,
2018
, “
Novel Multi-Step Short-Term Wind Power Prediction Framework Based on Chaotic Time Series Analysis and Singular Spectrum Analysis
,”
IEEE Trans. Power Syst.
,
33
(
1
), pp.
590
601
.
7.
Morshedizadeh
,
M.
,
Kordestani
,
M.
,
Carriveau
,
R.
,
Ting
,
D. S.
, and
Saif
,
M.
,
2018
, “
Power Production Prediction of Wind Turbines Using a Fusion of MLP and ANFIS Networks
,”
IET Renew. Power Gener.
,
12
(
9
), pp.
1025
1033
.
8.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2020
, “
Impact of Forecast Uncertainty on Wind Farm Profitability
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041018
.
9.
Zameer
,
A.
,
Arshad
,
J.
,
Khan
,
A.
, and
Raja
,
M. A. Z.
,
2017
, “
Intelligent and Robust Prediction of Short Term Wind Power Using Genetic Programming Based Ensemble of Neural Networks
,”
Energy Convers. Manage.
,
134
, pp.
361
372
.
10.
Liu
,
H.
,
Mi
,
X.
,
Li
,
Y.
,
Duan
,
Z.
, and
Xu
,
Y.
,
2019
, “
Smart Wind Speed Deep Learning Based Multi-Step Forecasting Model Using Singular Spectrum Analysis, Convolutional Gated Recurrent Unit Network and Support Vector Regression
,”
Renewable Energy
,
143
, pp.
842
854
.
11.
Li
,
L. L.
,
Zhao
,
X.
,
Tseng
,
M. L.
, and
Tan
,
R. R.
,
2020
, “
Short-Term Wind Power Forecasting Based on Support Vector Machine With Improved Dragonfly Algorithm
,”
J. Cleaner Prod.
,
242
, pp.
118447.1
118447.12
.
12.
Zhang
,
Y.
, and
Wang
,
J.
,
2018
, “
A Distributed Approach for Wind Power Probabilistic Forecasting Considering Spatio-Temporal Correlation Without Direct Access to Off-Site Information
,”
IEEE Trans. Power Syst
,
33
(
5
), pp.
5714
5726
.
13.
Wan
,
C.
,
Xu
,
Z.
,
Pinson
,
P.
,
Dong
,
Z.
, and
Wong
,
K.
,
2014
, “
Optimal Prediction Intervals of Wind Power Generation
,”
IEEE Trans. Power Syst
,
29
(
3
), pp.
1166
1174
.
14.
Sharifian
,
A.
,
Ghadi
,
M. J.
,
Ghavidel
,
S.
,
Li
,
L.
, and
Zhang
,
J.
,
2018
, “
A New Method Based on Type-2 Fuzzy Neural Network for Accurate Wind Power Forecasting Under Uncertain Data
,”
Renewable Energy
,
120
, pp.
220
230
.
15.
Wang
,
K.
,
Qi
,
X.
,
Liu
,
H.
, and
Song
,
J.
,
2018
, “
Deep Belief Network Based k-Means Cluster Approach for Short-Term Wind Power Forecasting
,”
Energy
,
165
, pp.
840
852
.
16.
Yan
,
J.
,
Zhang
,
H.
,
Liu
,
Y.
,
Han
,
S.
, and
Li
,
L.
,
2019
, “
Uncertainty Estimation for Wind Energy Conversion by Probabilistic Wind Turbine Power Curve Modelling
,”
Appl. Energy
,
239
, pp.
1356
1370
.
17.
Godinho
,
M.
, and
Castro
,
R.
,
2020
, “
Comparative Performance of AI Methods for Wind Power Forecast in Portugal
,”
Wind Energy
,
7
, pp.
1
15
.
18.
Persson
,
C.
,
Bacher
,
P.
,
Shiga
,
T.
, and
Madsen
,
H.
,
2017
, “
Multi-Site Solar Power Forecasting Using Gradient Boosted Regression Trees
,”
Sol. Energy
,
150
, pp.
423
436
.
19.
Yu
,
X.
,
Wang
,
Y.
,
Wu
,
L.
,
Chen
,
G.
,
Wang
,
L.
, and
Qin
,
H.
,
2019
, “
Comparison of Support Vector Regression and Extreme Gradient Boosting for Decomposition-Based Data-Driven 10-Day Streamflow Forecasting
,”
J. Hydrol.
,
582
, p.
124293
.
20.
Pan
,
Y.
,
Chen
,
S.
,
Qiao
,
F.
,
Ukkusuri
,
S. V.
, and
Tang
,
K.
,
2019
, “
Estimation of Real-Driving Emissions for Buses Fueled With Liquefied Natural Gas Based on Gradient Boosted Regression Trees
,”
Sci. Total Environ.
,
660
, pp.
741
750
.
21.
Torres-Barrán
,
A.
,
Alonso
,
Á
, and
Dorronsoro
,
J. R.
,
2019
, “
Regression Tree Ensembles for Wind Energy and Solar Radiation Prediction
,”
Neurocomputing
,
326–327
, pp.
151
160
.
22.
Ju
,
Y.
,
Sun
,
G.
,
Chen
,
Q.
,
Zhang
,
M.
,
Zhu
,
H.
, and
Rehman
,
M. U.
,
2019
, “
A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
,”
IEEE Access
,
7
, pp.
28309
28318
.
23.
Zhang
,
H.
, and
Sun
,
Y.
,
2020
, “
Application of Lightgbm and Lstm Combined Model in Vegetable Sales Forecast
,”
J. Phys. Conf. Ser.
,
1693
(
1
), p.
012110
.
24.
Zhang
,
D.
, and
Gong
,
Y.
,
2020
, “
The Comparison of LightGBM and XGBoost Coupling Factor Analysis and Prediagnosis of Acute Liver Failure
,”
IEEE Access
,
8
, pp.
220990
221003
.
25.
Wan
,
C.
,
Lin
,
J.
,
Wang
,
J.
,
Song
,
Y.
, and
Dong
,
Z. Y.
,
2017
, “
Direct Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power Generation
,”
IEEE Trans. Power Syst.
,
32
(
4
), pp.
2767
2778
.
26.
Kim
,
D.
, and
Hur
,
J.
,
2018
, “
Short-Term Probabilistic Forecasting of Wind Energy Resources Using the Enhanced Ensemble Method
,”
Energy
,
157
, pp.
211
226
.
27.
Korprasertsak
,
N.
, and
Leephakpreeda
,
T.
,
2019
, “
Robust Short-Term Prediction of Wind Power Generation Under Uncertainty via Statistical Interpretation of Multiple Forecasting Models
,”
Energy
,
180
, pp.
387
397
.
28.
Sun
,
M.
,
Feng
,
C.
,
Chartan
,
E. K.
,
Hodge
,
B.-M.
, and
Zhang
,
J.
,
2019
, “
A Two-Step Short-Term Probabilistic Wind Forecasting Methodology Based on Predictive Distribution Optimization
,”
Appl. Energy
,
238
, pp.
1497
1505
.
29.
Ahmadpour
,
A.
, and
Farkoush
,
S. G.
,
2020
, “
Gaussian Models for Probabilistic and Deterministic Wind Power Prediction: Wind Farm and Regional
,”
Int. J. Hydrogen Energy
,
45
(
51
), pp.
27779
27791
.
30.
Wang
,
Y.
,
Chen
,
J.
,
Chen
,
X.
,
Zeng
,
X.
, and
Liu
,
Y.
,
2020
, “
Short-Term Load Forecasting for Industrial Customers Based on tcn-Lightgbm
,”
IEEE Trans. Power Syst.
,
36
(
3
), pp.
1984
1997
.
31.
Zhang
,
Y. M.
,
Wang
,
H.
,
Mao
,
J.-X.
,
Xu
,
Z.-D.
, and
Zhang
,
Y.-F.
,
2021
, “
Probabilistic Framework With Bayesian Optimization for Predicting Typhoon-Induced Dynamic Responses of a Long-Span Bridge
,”
J. Struct. Eng.
,
147
(
1
), p.
04020297
.
32.
Wu
,
J.
,
Chen
,
X.-Y.
,
Zhang
,
H.
,
Xiong
,
L. D.
,
Lei
,
H.
, and
Deng
,
S. H.
,
2019
, “
Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization
,”
J. Electr. Sci. Technol.
,
17
(
1
), pp.
26
40
.
33.
Victoria
,
A. H.
, and
Maragatham
,
G.
,
2021
, “
Automatic Tuning of Hyperparameters Using Bayesian Optimization
,”
Evol. Syst.
,
12
(
1
), pp.
217
223
.
34.
Hutter
,
F.
,
Kotthoff
,
L.
, and
Vanschoren
,
J.
,
2019
,
Automated Machine Learning Methods, Systems, Challenges
,
Springer
,
New York
, pp.
103
108
. http://www.springer.com/series/15602
35.
Wu
,
J.
,
Toscano-Palmerin
,
S.
,
Frazier
,
P. I.
, and
Wilson
,
A. G.
,
2020
, “
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
,”
Proceedings of 35th Uncertainty in Artificial Intelligence Conference
,
Toronto, Ontario, Canada
,
Aug. 3
,
PMLR 115:788-798
.
36.
Ahmad
M. W.
,
Mourshed
,
M.
, and
Rezgui
,
Y.
,
2018
, “
Tree-Based Ensemble Methods for Predicting PV Power Generation and Their Comparison With Support Vector Regression
,”
Energy
,
164
, pp.
465
474
.
37.
Huang
,
H.
,
Jia
,
R.
,
Shi
,
X.
,
Liang
,
J.
, and
Dang
,
J.
,
2021
, “
Feature Selection and Hyper Parameters Optimization for Short-Term Wind Power Forecast
,”
Appl. Intell.
38.
Ahmad
,
M. W.
,
Reynolds
,
J.
, and
Rezgui
,
Y.
,
2018
, “
Predictive Modelling for Solar Thermal Energy Systems: A Comparison of Support Vector Regression, Random Forest, Extra Trees and Regression Trees
,”
J. Cleaner Prod.
,
203
, pp.
810
821
.
39.
Bhowmik
,
M.
,
Muthukumar
,
P.
, and
Anandalakshmi
,
R.
,
2019
, “
Experimental Based Multilayer Perceptron Approach for Prediction of Evacuated Solar Collector Performance in Humid Subtropical Regions
,”
Renewable Energy
,
143
, pp.
1566
1580
.
40.
García Nieto
,
P. J.
,
Sánchez Lasheras
,
F.
,
García-Gonzalo
,
E.
, and
de Cos Juez
,
F. J.
,
2018
, “
PM10 Concentration Forecasting in the Metropolitan Area of Oviedo (Northern Spain) Using Models Based on SVM, MLP, VARMA and ARIMA: A Case Study
,”
Sci. Total Environ.
,
621
, pp.
753
761
.
41.
Alameer
,
Z.
,
Elaziz
,
M. A.
,
Ewees
,
A. A.
,
Ye
,
H.
, and
Jianhua
,
Z.
,
2019
, “
Forecasting Gold Price Fluctuations Using Improved Multilayer Perceptron Neural Network and Whale Optimization Algorithm
,”
Resour. Policy
,
61
, pp.
250
260
.
42.
Yin
,
P.
,
Dou
,
G.
,
Lin
,
X.
, and
Liu
,
L.
,
2020
, “
A Hybrid Method for Forecasting New Product Sales Based on Fuzzy Clustering and Deep Learning
,”
Kybernetes.
,
49
(
12
), pp.
3099
3118
.
43.
Liu
,
H.
,
2020
, “
Big Data Precision Marketing and Consumer Behavior Analysis Based on Fuzzy Clustering and PCA Model
,”
J. Intell. Fuzzy Syst.
,
40
(
2
), pp.
1
11
.
44.
Trauwaert
,
E.
,
1988
, “
On the Meaning of Dunn's Partition Coefficient for Fuzzy Clusters
,”
Fuzzy Sets Syst.
,
25
(
2
), pp.
217
242
.
45.
Han
,
Y.
,
Wang
,
N.
,
Ma
,
M.
,
Zhou
,
H.
,
Dai
,
S.
, and
Zhu
,
H.
,
2019
, “
A PV Power Interval Forecasting Based on Seasonal Model and Nonparametric Estimation Algorithm
,”
Sol. Energy
,
184
, pp.
515
526
.
46.
Quan
,
H.
,
Khosravi
,
A.
,
Yang
,
D.
, and
Srinivasan
,
D.
,
2020
, “
A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
31
(
11
), pp.
4582
4599
.
You do not currently have access to this content.