Abstract

This article presents a fully three-dimensional numerical study on the process of melt pool evolution. To overcome the simplifications used in many existing studies, an enthalpy method is developed for the phase change, and an accurate interface capturing method, i.e., the coupled volume-of-fluid and level set (VOSET) method, is employed to track the moving gas–liquid interface. Meanwhile, corresponding experimental studies are carried out for validation. The obtained numerical results show the formed interface morphology during the process of melt pool with its typical sizes and are quantitatively consistent with those data measured in experiments. Based on the numerical results, the thermodynamic phenomena, induced by the interaction between heat and momentum exchange, occurring in the formation of melt pool are presented and discussed. Mechanisms of the melt pool evolution revealed in the present study provide a useful guidance for better controlling the process of additive manufacturing.

References

1.
Ma
,
G. Y.
,
Yu
,
C.
,
Tang
,
B. K.
,
Li
,
Y.
,
Liu
,
S.
,
Niu
,
F. Y.
,
Wu
,
D. J.
,
Bi
,
G. J.
, and
Liu
,
S. B.
,
2020
, “
High-Mass-Proportion TiCp/Ti6Al4V Titanium Matrix Composites Prepared by Directed Energy Deposition
,”
Addit. Manuf.
,
35
, p.
101323
.
2.
Bhardwaj
,
T.
,
Shukla
,
M.
,
Paul
,
C. P.
, and
Bindra
,
K. S.
,
2019
, “
Direct Energy Deposition-Laser Additive Manufacturing of Titanium-Molybdenum Alloy: Parametric Studies, Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
787
, pp.
1238
1248
.
3.
Kim
,
M. S.
,
Oh
,
W. J.
,
Baek
,
G. Y.
,
Jo
,
Y. K.
,
Lee
,
K. Y.
,
Park
,
S. H.
, and
Shim
,
D. S.
,
2020
, “
Ultrasonic Nanocrystal Surface Modification of High-Speed Tool Steel (AISI M4) Layered via Direct Energy Deposition
,”
J. Mater. Process. Technol.
,
277
, p.
116420
.
4.
Liu
,
H. M.
, and
Zhou
,
Y.
,
2021
, “
An Interaction Model for Laser and Powder in Wide-Beam Laser Cladding
,”
Int. J. Adv. Manuf. Technol.
,
112
(
1–2
), pp.
15
23
.
5.
Prasad
,
H. S.
,
Brueckner
,
F.
, and
Kaplan
,
A. F. H.
,
2020
, “
Powder Incorporation and Spatter Formation in High Deposition Rate Blown Powder Directed Energy Deposition
,”
Addit. Manuf.
,
35
, p.
101413
.
6.
Li
,
S. M.
,
Xiao
,
H.
,
Liu
,
K. Y.
,
Xiao
,
W. J.
,
Li
,
Y. Q.
,
Han
,
X.
,
Mazumder
,
J.
, and
Song
,
L. J.
,
2017
, “
Melt-Pool Motion, Temperature Variation and Dendritic Morphology of Inconel 718 During Pulsed- and Continuous-Wave Laser Additive Manufacturing: A Comparative Study
,”
Mater. Des.
,
119
, pp.
351
360
.
7.
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Pauza
,
C. K.
,
Sun
,
K. F.
, and
Rollett
,
A. D.
,
2019
, “
Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging
,”
Science
,
363
(
6429
), pp.
849
852
.
8.
Azarniya
,
A.
,
Colera
,
X. G.
,
Mirzaali
,
M. J.
,
Sovizi
,
F.
,
Bartolomeu
,
F.
,
Weglowski
,
M.
,
Wits
,
W. W.
, et al
,
2019
, “
Additive Manufacturing of Ti–6Al–4V Parts Through Laser Metal Deposition (LMD): Process, Microstructure, and Mechanical Properties
,”
J. Alloys Compd.
,
804
, pp.
163
191
.
9.
Fathi
,
A.
, and
Mozaffari
,
A.
,
2014
, “
Vector Optimization of Laser Solid Freeform Fabrication System Using a Hierarchical Mutable Smart Bee-Fuzzy Inference System and Hybrid NSGA-II/Self-Organizing Map
,”
J. Intell. Manuf.
,
25
(
4
), pp.
775
795
.
10.
Xing
,
X.
,
Zhou
,
Q.
,
Wang
,
S.
,
Wang
,
L. Q.
, and
Jiang
,
F. C.
,
2019
, “
Numerical Investigation of Transient Temperature Distribution During Ti-6Al-4V Selective Laser Melting
,”
J. Therm. Sci.
,
28
(
2
), pp.
370
377
.
11.
Choi
,
Y. H.
,
Lee
,
Y. W.
,
Choi
,
K.
,
Doh
,
D. H.
, and
Kim
,
K. J.
,
2012
, “
Temperature Distribution and Thermal Stresses in Various Conditions of Moving Heating Source During Line Heating Process
,”
J. Therm. Sci.
,
21
(
1
), pp.
82
87
.
12.
Lei
,
Y. P.
,
Murakawa
,
H.
,
Shi
,
Y. W.
, and
Li
,
X. Y.
,
2001
, “
Numerical Analysis of the Competitive Influence of Marangoni Flow and Evaporation on Heat Surface Temperature and Molten Pool Shape in Laser Surface Remelting
,”
Comput. Mater. Sci.
,
21
(
3
), pp.
276
290
.
13.
Ha
,
E. J.
, and
Kim
,
W. S.
,
2005
, “
A Study of Low-Power Density Laser Welding Process With Evolution of Free Surface
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
613
621
.
14.
Han
,
L.
,
Liou
,
F. W.
, and
Musti
,
S.
,
2005
, “
Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
1005
1014
.
15.
Ding
,
X. P.
,
Wang
,
L. Z.
, and
Wang
,
S.
,
2016
, “
Comparison Study of Numerical Analysis for Heat Transfer and Fluid Flow Under Two Different Laser Scan Pattern During Selective Laser Melting
,”
Optik
,
127
(
22
), pp.
10898
10907
.
16.
Ebrahimi
,
A.
,
Kleijn
,
C. R.
, and
Richardson
,
I. M.
,
2020
, “
Numerical Study of Molten Metal Melt Pool Behaviour During Conduction-Mode Laser Spot Melting
,”
J. Phys. D: Appl. Phys.
,
54
(
10
), p.
105304
.
17.
Hozoorbakhsh
,
A.
,
Ismail
,
M. I. S.
,
Sarhan
,
A. A. D. M.
,
Bahadoran
,
A.
, and
AbdulAziz
,
N. B.
,
2016
, “
An Investigation of Heat Transfer and Fluid Flow on Laser Micro-Welding Upon the Thin Stainless Steel Sheet (SUS304) Using Computational Fluid Dynamics (CFD)
,”
Int. Commun. Heat Mass
,
75
, pp.
328
340
.
18.
Chakraborty
,
N.
,
2009
, “
The Effects of Turbulence on Molten Pool Transport During Melting and Solidification Processes in Continuous Conduction Mode Laser Welding of Copper–Nickel Dissimilar Couple
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3618
3631
.
19.
He
,
X.
,
Fuerschbach
,
P. W.
, and
DebRoy
,
T.
,
2003
, “
Heat Transfer and Fluid Flow During Laser Spot Welding of 304 Stainless Steel
,”
J. Phys. D: Appl. Phys.
,
36
(
12
), pp.
1388
1398
.
20.
Tseng
,
C. C.
, and
Li
,
C. J.
,
2019
, “
Numerical Investigation of Interfacial Dynamics for the Melt Pool of Ti-6Al-4V Powders Under a Selective Laser
,”
Int. J. Heat Mass Transf.
,
134
, pp.
906
919
.
21.
Bayat
,
M.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
A Systematic Investigation of the Effects of Process Parameters on Heat and Fluid Flow and Metallurgical Conditions During Laser-Based Powder Bed Fusion of Ti6Al4V Alloy
,”
Int. J. Heat Mass Transf.
,
139
, pp.
213
230
.
22.
Gaumann
,
M.
,
Bezencon
,
C.
,
Canalis
,
P.
, and
Kurz
,
C. W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing Microstructure Maps
,”
Acta Mater.
,
49
(
6
), pp.
1051
1062
.
23.
Jung
,
Y. I.
,
Kim
,
H. G.
,
Kim
,
I. H.
,
Kim
,
S. H.
,
Park
,
J. H.
,
Park
,
D. J.
,
Yang
,
J. H.
, and
Koo
,
Y. H.
,
2017
, “
Strengthening of Zircaloy-4 Using Y2O3 Particles by a Laser Beam Induced Surface Treatment Process
,”
Mater. Des.
,
116
, pp.
325
330
.
24.
Gan
,
Z. T.
,
Yu
,
G.
,
He
,
X. L.
, and
Li
,
S. X.
,
2017
, “
Numerical Simulation of Thermal Behavior and Multicomponent Mass Transfer in Direct Laser Deposition of Co-Base Alloy on Steel
,”
Int. J. Heat Mass Transf.
,
104
, pp.
28
38
.
25.
Gan
,
Z. T.
,
Yu
,
G.
,
He
,
X. L.
, and
Li
,
S. X.
,
2017
, “
Surface-Active Element Transport and Its Effect on Liquid Metal Flow in Laser Assisted Additive Manufacturing
,”
Int. Commun. Heat Mass
,
86
, pp.
206
214
.
26.
Wu
,
C. S.
,
2017
,
Thermodynamic and Melt Pool Shape in Welding Process (Chinese)
,
Machinery Industry Press
,
BJ
.
27.
Chang
,
B. H.
,
Allen
,
C.
,
Blackburn
,
J.
,
Hilton
,
P.
, and
Du
,
D.
,
2015
, “
Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy
,”
Metall. Mater. Trans. B
,
46
(
2
), pp.
906
918
.
28.
Sun
,
D. L.
, and
Tao
,
W. Q.
,
2010
, “
A Coupled Volume-of-Fluid and Level Set (VOSET) Method for Computing Incompressible Two-Phase Flows
,”
Int. J. Heat Mass Transf.
,
53
(
4
), pp.
645
655
.
29.
Ling
,
K.
,
Li
,
Z. H.
,
Sun
,
D. L.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2015
, “
A Three-Dimensional Volume of Fluid & Level Set (VOSET) Method for Incompressible Two-Phase Flow
,”
Comput. Fluids
,
118
, pp.
293
304
.
30.
Bian
,
Q. F.
,
Dai
,
R. K.
,
Tang
,
X. L.
,
Liu
,
Q.
,
Wang
,
Q. W.
, and
Zeng
,
M.
,
2017
, “
Investigation on the Effect of the Thermal Dynamic, Evaporation and Alternative Material Properties in Laser Melt Pool With a Developed 2D Model Based on The VOSET Method
,”
Numeri. Heat Transf. A Appl.
,
83
(
3
), pp.
204
221
.
31.
Bian
,
Q. F.
,
Tang
,
X. L.
,
Dai
,
R. K.
, and
Zeng
,
M.
,
2018
, “
Evolution Phenomena and Surface Shrink of the Melt Pool in an Additive Manufacturing Process Under Magnetic Field
,”
Int. J. Heat Mass Transf.
,
123
, pp.
760
775
.
32.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transf.
,
30
(
8
), pp.
1709
1718
.
33.
Semak
,
V.
, and
Matsunawa
,
A.
,
1998
, “
The Role of Recoil Pressure in Energy Balance During Laser Materials Processing
,”
J. Phys. D: Appl. Phys.
,
30
(
18
), pp.
2541
2552
.
34.
Ebrahimi
,
A.
,
Kleijn
,
C. R.
, and
Richardson
,
I. M.
,
2019
, “
Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method
,”
Energies
,
12
(
22
), pp.
1
18
.
35.
Wang
,
Y.
, and
Tsai
,
H. L.
,
2001
, “
Effects of Surface Active Elements on Weld Pool Fluid Flow and Weld Penetration in Gas Metal Arc Welding
,”
Metall. Mater. Trans. B
,
32
(
3
), pp.
501
515
.
36.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
37.
Tao
,
W. Q.
,
2001
,
Numerical Heat Transfer (Chinese)
, 2nd ed.,
Xi'an Jiao Tong University Press
,
XA
.
38.
Jiao
,
J. K.
,
Wang
,
F. Y.
, and
Sun
,
J. Q.
,
2016
, “
Study on Copper Surface Pre-Treating and Welding With Fiber Lasers (Chinese)
,”
Laser Optoelectron. Prog.
,
53
(
3
), pp.
158
163
.
39.
Blom
,
A.
,
Dunias
,
P.
,
Engen
,
P. V.
,
Hoving
,
W.
, and
Kramer
,
J.
,
2003
, “
Process Spread Reduction of Laser Micro-Spot Welding of Thin Copper Parts Using Real-Time Control
,”
Proc. SPIE
,
4977
, pp.
493
507
.
You do not currently have access to this content.